

Final Report for:

Modifying Link-Level Emissions Modeling Procedures for Applications within the MOVES Framework

Under Federal Highway Administration Contract Number:

DTFH61-09-C-00028

Submitted to:

Federal Highway Administration U.S. Department of Transportation

Submitted By:

Eastern Research Group, Inc.

Publication Number:

FHWA-HEP-11-006

September 2010

Final Report for:

Modifying Link-Level Emissions Modeling Procedures for Applications within the MOVES Framework

Under Federal Highway Administration Contract Number:

DTFH61-09-C-00028

Publication Number:

FHWA-HEP-11-006

Submitted By:

Scott Fincher Cindy Palacios Sandeep Kishan Diane Preusse Heather Perez

Eastern Research Group, Inc.

Points of Contact:

Principal Investigator	Sandeep Kishan, P.E.	Ofc: 512-407-1830 Fax: 512-409-0089	3508 Far West Blvd, Suite 210, Austin, TX 78731	sandeep.kishan@erg.com
Technical Contact	Scott Fincher	Ofc: 512-407-1826 Fax: 512-409-0089	3508 Far West Blvd, Suite 210, Austin, TX 78731	scott.fincher@erg.com
Business Contact	Linda Taylor	Ofc: 781-674-7229 Fax: 781-674-2851	110 Hartwell Ave Lexington, MA 02421	linda.taylor@erg.com

September 2010

3508 Far West Blvd., Suite 210, Austin, TX 78731 • Phone: 512-407-1820 • Fax: 512-419-0089

Arlington, VA • Atlanta, GA • Austin, TX • Boston, MA • Chantilly, VA • Chicago, IL • Cincinnati, OH • Hershey, PA

Prairie Village, KS • Lexington, MA • Nashua, NH • Research Triangle Park, NC • Sacramento, CA

Table of Contents

1.0	Introd	uction	1-1
2.0	Prepar	ation of MOVES Inputs	
	2.1	VMT Pre-Processing	
		Processing of TDM-based VMT data	
		Processing of HPMS-based VMT data	
	2.2	Use of EPA Spreadsheet Converter Tools	
		VMT Converter Tool	
		AADVMT Calculator Tool	
		Age Distribution	
		Speed Distribution	
	2.3	Preparation of Other Inputs	
		Vehicle Population	
		I/M Programs	
		Fuel Formulation and Supply	
		Meteorological Data	
	2.4	MOVES Model Setup	
		Model Option Selection	
		County Data Manager	
3.0	Model	Execution and Output Processing	
	3.1	Model Execution	
	3.2	MOVES Output Processing	
		MOVES GUI Summary Reports	
		Processing Model Output Using MySQL	
4.0	Drive	Cycle Development	
	4.1	Preparation of Raw Data	
		Assignment of Road Types	
		Removal of Waiting Times at Test Center	
		Blocks of Time with Stuck Speeds	
		False Trips	
		Engine Off Times	
		Assignment of Trip and Micro-Trip Starts	
		Binning of Continuous Variables	
		Criteria for Skipping Micro-Trips for a Cycle	4-11
		Assignment of Micro-Trips to Road Type and Speed Bins	4-11
	4.2	Drive Cycle Development	
		General Methodology	4-15
	4.3	Development of the Twelve Drive Cycles for Inclusion in MOVES	4-21
		Speed versus Time Traces for Candidate Cycles	
		Comparison of Statistics for Cycle and Target	
		MOVES Modeling of Kansas City Drive Cycles	
5.0	Model	Outputs	
	5.1	Comparison of MOVES Outputs to MOBILE-6 Based Inventory	
	5.2	Comparison of MOVES Default Drive Cycle Output to Alternate Driv	e Cycle
		Outputs	

6.0	Conc	clusions	6-1
6.	6.1	Important Transition Issues	6-1
		Proper VMT Derivation and Inputs	
		Vehicle / Source Type Characterization	
		Inspection/Maintenance Program Inputs	
		Vehicle Population Data Selection	
		MOVES Bugs and Errata	
	6.2	Study Questions	6-6

List of Tables

Table 2-1. Example Harris County Tab-delimited 24-hour VMT (gasoline vehicles)	
Table 2-2. H-GAC Road Types Mapped to HPMS Road Types	
Table 2-3. Harris County HPMS VMT Example	
Table 2-4. Default HPMS VMT, Growth Factors, and 2006 Projected VMT	
Table 2-5. Default MOVES VMT Fractions	
Table 2-6. HPMS VMT by Source Category	
Table 2-7. H-GAC Road Types Mapped to HPMS Road Types	
Table 2-8. HPMS Road Types Mapped to MOVES Road Types	
Table 2-9. Example MOVES Default VMT Fraction by Vehicle Type ID	
Table 2-10. Summary of Inputs to County Data Manager	
Table 4-1. Road classification codes and definitions	
Table 4-2. Road Classes Mapped to MOVES Road Types	
Table 4-3. First Pass Speed Bins, Based on Default MOVES Drive Cycle Speed Rar	1ges 4-13
Table 4-4. Final Speed Bins, Based on Uniform Distribution of Trips Across	
Speed Ranges	4-14
Table 4-5. Comparison of Cycle and Target Vectors for a Hypothetical One-Dimensional	ional
Example	4-17
Table 4-6. Comparison of Cycle and Target Matrices for a Hypothetical Two-Dimen	sional
Example	
Table 4-7. Comparison of Dataset and Cycle Operation Characteristics	4-24
Table 5-1. Summary of VMT and Tons of Emissions, by County, Non-school Ozone	
Season Weekday	
Table 5-2. Percent Difference between MOVES and MOBILE6 Inventory Results	
Table 5-3. Summary of VMT and Tons of Emissions, by County and Vehicle Classifi	cation,
Non-school Ozone Season Weekday	
Table 5-4. Percent Difference between MOVES and MOBILE6 Inventory Results,	
by Vehicle Classification	

Table 5-5. Summary of VMT and Tons of Emissions, by County and Emissions Process	
Classification, Non-school Ozone Season Weekday	5-7
Table 5-6. Percent Difference between MOVES and MOBILE6 Inventory Results,	
by Emissions Process Classification	5-8
Table 5-7. Comparison of Eight County Light Duty Emissions for Both Drive Cycles	
and VMT Bases (Overall tons)	5-9
Table 5-8. Comparison of Eight County Light Duty Emissions for Both Drive Cycles	
and VMT Bases (Tons, by Source Type)	5-10
Table 5-9. Comparison of Eight County Light Duty Emissions for Both Drive Cycles	
and VMT Bases (Tons, by Road Type)	5-10
Table 5-10. Comparison of Eight County Light Duty Emissions for Both Drive Cycles	
and VMT Bases (Tons, by Emission Process ID)	5-11

List of Figures

Figure 2-1. MOVES Input Data Flow	
Figure 2-2. Example Input of VMT to EPA Conversion Tool - Harris County	
Figure 2-3. VMT Output from EPA Conversion Tool – Harris County	
Figure 2-4. AADVMT Input – Harris County	
Figure 2-5. MOVES Interface Example	
Figure 2-6. County Data Manager Example	
Figure 2-7. MOVES Input Preparation Quick Reference	
Figure 3-1. Multiple RunSpec Creator	
Figure 3-2. Sample Batch File for Execution of Multiple MOVES Runs	
Figure 3-3. Sample MOVES Configuration Files	
Figure 3-4. MOVES Output Emission Process Selection	
Figure 3-5. Summary Report Input Dialog Example	
Figure 3-6. Summary Report Output Example	
Figure 3-7. Sample Query and Output using MySQL Query Browser - Emissions.	
Figure 3-8. Sample Query and Output using MySQL Query Browser - Activity	
Figure 3-9. MOVES Execution and Output Processing Quick Reference	
Figure 4-1. Sample Assignment of Road Types and Data Points	
Figure 4-2. Waiting Times at Test Center	
Figure 4-3. Data Logger with Stuck Speed	
Figure 4-4. False Trips in Drive-Away Driving	
Figure 4-5. Highway Driving Interspersed with Unrestricted Cross Streets	
Figure 4-6. Vector Description of Comparing Target and Cycle Activity	
Figure 4-7. Visual Comparison of Vector Elements	

1.0 Introduction

Emission inventories for on-road mobile sources are compiled across the country in support of State Implementation Plans (SIPs) and Conformity Demonstrations as mandated by the Federal Clean Air Act. Each local agency responsible for developing these inventories has created its own approach for combining vehicle activity, area specific fleet information, local regulations, and EPA's MOBILE6 emissions modeling software. All of these approaches will soon have to be redesigned in order to work with EPA's replacement for MOBILE6, entitled the Motor Vehicle Emission Simulator (MOVES) model. The primary goal of this study is to ease the transition to the MOVES model by providing both a road map for developing updated emissions inventories, as well as an analysis of the likely impacts of the transition on the emissions inventories themselves.

The adoption of EPA's new MOVES model represents a fundamental change in the onroad vehicle emission inventory process. MOVES uses real world driving cycle data and the measured emissions from associated drive cycles to model a wide range of possible driving patterns and their resultant emissions. With this approach, emissions due to any particular driving cycle may be estimated. The resulting estimates are based on real world driving and are well-suited for integration with transportation models. Effective utilization of the new MOVES model within the existing inventory development framework may require extensive modification to on-road data collection and processing requirements. However, successful integration of the MOVES model into this process offers the potential for significant improvements in both the accuracy and precision of the resulting emissions estimates. With this in mind, another goal of this study was to evaluate the effects of using alternative drive cycles within the MOVES model upon vehicle emissions.

This study was designed specifically to answer the following questions:

- What is the best approach for creating an emissions inventory with MOVES based on activity data obtained from a travel demand model (TDM)?
- What is the best approach for creating an emissions inventory with MOVES based on activity data obtained from the Highway Performance Monitoring System (HPMS)?
- What will be the likely impacts on an emission inventory from developing and implementing different drive cycles derived from real world testing data within MOVES?

• What will be the likely impacts on an emission inventory after conversion from a MOBILE6 basis to a MOVES basis?

We hope that the findings of this study will help agencies responsible for developing onroad emission inventories to effectively use data processing tools provided by EPA to convert existing MOBILE6-based vehicle characteristic and activity data to be compatible with MOVES, and to develop additional such tools where necessary. We have also set out to help identify those factors responsible for the largest changes in emission estimates when migrating from MOBILE6 to MOVES, using real world data and case studies. In this way, agencies will be informed as to which types of on-road activity data may be most important to develop and refine for use within MOVES.

In addition to the key questions above, we also kept the following questions in mind:

- How can users best transition from MOBILE6 to MOVES?
- How substantial will the emissions change likely be when switching to MOVES as a primary model?
- What information must be collected to successfully run MOVES using both linklevel and non-link-level sources of activity data?
- How difficult is it to run MOVES?
- What potential surprises will users encounter when switching to MOVES?
- How can alternate drive cycle data sets best be incorporated for both HPMS-based and TDM-based inventories in different areas?
- How will output emissions differ when modeling TDM data versus HPMS data?

The version of MOVES used in this study was MOVES2010, originally released in December of 2009. Although we have attempted in this report to cover as much ground as possible in comparison of MOBILE6 to MOVES, the reader should understand that the information provided here is not all-encompassing. For example, this study only examines a specific ozone season day, for a single year, in the eight-county Houston non-attainment area, and its results should not be assumed to be applicable to other regions of the country. Similarly, the data used for the calculation of alternate drive cycles input to the model is derived from data collected in Kansas City, and should be considered specific to that area. In addition, the study only examines impacts from CO, NOx, and VOC emissions; other outputs from MOVES (such as PM10, CO2, or total energy consumption) were not modeled.

Section 2 discusses methodologies for preparation of the inputs necessary to perform a MOVES model run, and details the inputs used in the model runs we developed for this project. Section 3 focuses on the successful execution of MOVES, and processing of output from the model. Section 4 discusses the development of drive cycles based upon the Kansas City Emissions Study previously performed for EPA by ERG, and the steps necessary for integration of those drive cycles into MOVES. Section 5 presents summaries of the emissions inventories for CO, NOx, and VOC emissions calculated using MOVES for all modeled scenarios, and compares those outputs both to the TTI MOBILE6-based inventory, and in the case of alternate drive cycles, to each other. Finally, Section 6 summarizes our conclusions from this study, and attempts to answer the study questions set forth here.

2.0 Preparation of MOVES Inputs

In order to answer the first two study questions listed previously, ERG began the process of re-creating, using MOVES, the emissions inventory for the 8-county Houston-Galveston-Brazoria (HGB) ozone nonattainment area¹ prepared by the Texas Transportation Institute (TTI) using MOBILE6 and other associated tools. We selected this inventory as the subject for the analysis based on the level of detail utilized in the current modeling, as well as our long standing relationship with the Texas Commission on Environmental Quality (TCEQ) and the Texas Transportation Institute (TTI), the parties responsible for developing the inventory for the Houston region.

TTI's inventory uses link-level travel demand model outputs obtained from the Houston-Galveston Area Council (H-GAC), which have been processed and combined with MOBILE6 factors for each of the model's 28 vehicle classes by TTI. TTI processing activities include application of vehicle miles traveled (VMT), volume, speed, time of day, and seasonal adjustment factors to the link-level H-GAC activity data to obtain hourly allocations, as well as preparation and execution of episode-specific MOBILE6 runs in order to develop final mass emissions estimates. The emissions inventory files, as well as all of the supporting data and documentation, used to support the 2006 Houston-Galveston-Brazoria ozone nonattainment SIP is posted on TCEQ's public ftp server².

The inventory scenario selected for re-creation was an ozone season non-school weekday. Each county in the HGB area was modeled independently. Data provided by TTI included tab delimited summary files containing travel demand model (TDM) based VMT, VMT mix, hours of operation, vehicle speed, and other parameters on an hourly basis for each county, which were used for development of the first set of MOVES model runs prepared for this analysis. HPMS-based VMT was also provided, and was used to develop the second set of MOVES modeling runs. In addition, TTI provided MOBILE6 input files, along with associated MOBILE6 VMT by hour, speed VMT, VMT by facility, registration distribution, and inspection and maintenance (I/M) inputs.

¹ 2005/2006 On-Road Mobile Source, Ozone Episode Modeling Emission Inventories for the HGB Eight-Hour Nonattainment Area (TTI, 2007)

² These files are available at the following URL: <u>ftp://ftp.tceq.state.tx.us/pub/OEPAA/TAD/Modeling/Mobile_EI/</u>.

The TDM-based VMT data was processed using SAS³ programs developed by ERG to obtain VMT estimates usable in MOVES. ERG developed other spreadsheet tools and methodology for conversion of HPMS-based VMT into MOVES format⁴. MOVES spreadsheet tools developed by EPA specifically for conversion of MOBILE6 inputs into MOVES formats (available at http://www.epa.gov/otaq/models/moves/tools.htm) were also used extensively. The methodology used in preparing inputs for execution in MOVES generally involved four steps:

- Pre-processing of VMT Data
- Application of EPA Converter Tools to VMT Data and MOBILE6 files
- Pre-Processing of Other Required Data
- MOVES Model Setup

The general data flow for the inputs required to the MOVES model is presented in Figure 2-1.

Figure 2-1. MOVES Input Data Flow

³ SAS, or the Statistical Analysis System, is an integrated system of software products, developed by <u>SAS Institute</u> <u>Inc.</u>, that ERG used in its data analysis during the course of this study. More information is available at www.sas.com.

⁴ These tools are provided electronically in Appendix A, and described in more detail in Section 2.1.

A description of the processes used in analysis of the data provided by TTI, along with documentation of the methodology employed in creating MOVES input and output files, is provided below.

2.1 VMT Pre-Processing

The first step in preparing data for input to MOVES is to ensure that the activity data that will be used is representative and complete. Correct application of VMT, whether obtained from a travel demand model, HPMS, or other sources, is crucial to ensure model outputs correctly estimate emissions for a given area. For the purposes of this study, we prepared activity data derived from both TDM and HPMS. In this section, we discuss procedures we undertook in preparing our activity data, prior to subsequent processing in EPA's VMT spreadsheet tools, which will be discussed later.

Processing of TDM-based VMT data

In the case of TDM-based VMT, TTI provided tab-delimited summary files that included VMT, VMT mix, hours of operation, vehicle speed, and other parameters on an hourly basis for each county of interest. An example of the tab-delimited VMT summary data we received is presented in Table 2-1.

ROADWAY TYPE	LDGV	LDGT1	LDGT2	LDGT3	LDGT4	HDGV2b	HDGV3	HDGV4	HDGV5	HDGV6	HDGV7	HDGV8a	HDGV8b
Urban Interstate	5234029	425653	1416995	423979	194975	47905	16793	6649	2387	6478	2131	2472	426
Urban Other Freeway	2325426	189130	629612	188396	86638	21108	7399	2930	1052	2855	939	1089	188
Toll Roads	3554228	289074	962325	287950	132419	32149	11270	4462	1602	4348	1430	1659	286
Ramps (Fwy/Toll/Frnt)	364309	32879	109453	33570	15438	4340	1521	602	216	587	193	224	39
Urban Prin. Art.	1648401	148801	495356	151937	69871	19876	6967	2759	990	2688	884	1026	177
Urban Other Art.	2948941	266194	886158	271797	124991	35163	12326	4880	1752	4755	1564	1814	313
Urban Collector	213299	24812	82600	26893	12367	4218	1479	585	210	570	188	218	38
Local (Cent. Conn.)	3902947	454054	1511540	492125	226314	76860	26942	10668	3829	10394	3419	3966	684
Rural Interstate	12238642	995312	3313381	991404	455917	111089	38941	15419	5534	15023	4942	5733	988
Rural Other Freeway	2521654	205085	682724	204286	93945	22873	8018	3175	1140	3093	1018	1180	203
Rural Prin. Art.	6175292	557389	1855542	569097	261710	73626	25808	10219	3668	9957	3275	3799	655
Rural Other Art.	15704998	1417602	4719178	1447400	665616	186714	65449	25914	9302	25250	8306	9635	1661
Rural Major Col.	801542	93251	310433	101070	46479	15690	5500	2178	782	2122	698	810	140
Rural Collector	473582	55099	183422	59718	27463	9224	3233	1280	460	1247	410	476	82
Local (Intrazonal)	138475	16113	53642	17464	8031	2729	956	379	136	369	121	141	24
TOTALS	58245767	5170448	17212360	5267087	2422176	663563	232601	92097	33059	89736	29518	34241	5902

 Table 2-1. Example Harris County Tab-delimited 24-hour VMT (gasoline vehicles)

It became apparent to us that for the purposes of this study, using a combination of the tab-delimited summary files and MOBILE6 inputs provided by TTI would be the most efficient way to create representative MOVES input files. We arrived at this conclusion after perusing the MOVES conversion tools made available by EPA, which rely primarily on existing MOBILE6 inputs for use in creating MOVES input files.⁵ It is important to note that EPA's conversion tools are designed to accept activity data in NMIM⁶ format, and data available in that format may require little to no additional processing on the part of the user. However, since activity data for a given region may be available in a variety of formats, users interested in preparing TDM-based VMT for input to MOVES for their own region may need to develop their own methods for processing VMT. In doing so, the primary consideration should be:

- to appropriately calculate VMT, in millions of miles, by HPMS road type and MOBILE6 vehicle type. An example of properly formatted VMT data is presented in Figure 2-2.
- to appropriately calculate the percentage of Vehicle Hours Traveled (VHT) apportioned to ramps⁷. MOVES does not have a separate roadway type for ramps. Instead, it requires ramp fraction as an input. If VHT are not available, defaults ramp fractions can be used, although this is not preferred.
- to appropriately calculate VMT distributed by hour, if not already available from existing MOBILE6 inputs.

Each of these inputs are required for EPA's VMT processor, which is further described in Step 2.

⁵ Because many users of MOVES are likely to already have MOBILE6 input files and (other information based on MOBILE6 vehicle types) available to them, and because EPA is encouraging usage of their conversion tools, we feel this process reflects the application of what will likely be a common way of creating MOVES runspecs. ⁶ The National Mobile Inventory Model is, according to EPA, "a free, desktop computer application developed by EPA to help you develop estimates of current and future emission inventories for on-road motor vehicles and nonroad equipment". More information is available at http://www.epa.gov/otaq/nmim.htm.

⁷ A procedure for calculating VHT is presented in section 3.6 of EPA's "Technical Guidance on the Use of MOVES2010 for Emission Inventory Preparation in State Implementation Plans and Transportation Conformity," EPA-420-B-09-042.

1	HARR-vmt-co	nverter-veh	28-2010020	9.xls											
	A	В	С	E	F	G	Н		J	K	L	M	N	0	P
	Enter														
1	Base Year	2006													
2															
3	BaseYear	vClass28	RoadType	VMT (million miles)		Note	: The vClass fie	ld must be p	opulated as	s follows:					
4	2006	1	11	12.238642		vClass	Vehicle Class	Description							
5	2006	1	13	8.6969459		1	LDGV	Light-Duty G	asoline Vel	nicles (Pass	enger Cars)				
6	2006	1	15	15.704997		2	LDGT1	Light-Duty G	asoline Tru	cks 1 (0 - 6,1	000 lbs. GW	VR, 0 - 3,75	0 lbs. LVW)		
7	2006	1	17	0.8015422		3	LDGT2	Light-Duty G	asoline Tru	cks 2 (0 - 6,1	000 lbs. GW	VR, 3,751 -	5,750 lbs. L	.VW)	
8	2006	1	19	0.4735822		4	LDGT3	Light-Duty G	asoline Tru	cks 3 (6,001	- 8,500 lbs.	GWVR, 0 -	5,750 lbs. A	LVW)	
9	2006	1	21	0.1384752		5	LDGT4	Light-Duty G	asoline Tru	cks 4 (6,001	- 8,500 lbs.	GWVR, gre	ater than 5,	751 lbs. ALV	W)
10	2006	1	23	5.2340291		6	HDGV2b	Class 2b He	avy-Duty G	asoline Vehi	cles (8,501 ·	- 10,000 lbs	. GWWR)		
11	2006	1	25	5.8796547		7	HDGV3	Class 3 Hea	avy-Duty Ga	soline Vehic	les (10,001 ·	- 14,000 lbs	. GWVR)		
12	2006	1	27	1.6484011		8	HDGV4	Class 4 Hea	avy-Duty Ga	soline Vehic	les (14,001 ·	- 16,000 lbs	. GWWR)		
13	2006	1	29	2.9489411		9	HDGV5	Class 5 Hea	avy-Duty Ga	soline Vehic	les (16,001 ·	- 19,500 lbs	. GWVR)		
14	2006	1	31	0.2132992		10	HDGV6	Class 6 Hea	avy-Duty Ga:	soline Vehic	les (19,501 ·	- 26,000 lbs	. GWVR)		
15	2006	1	33	3.9029468		11	HDGV7	Class 7 Hea	avy-Duty Ga	soline Vehic	les (26,001 ·	- 33,000 lbs	. GWWR)		
16	2006	2	11	0.9953118		12	HDGV8a	Class 8a He	eavy-Duty G	asoline Vehi	cles (33,001	- 60,000 lb	s. GWVR)		
17	2006	2	13	0.7624738		13	HDGV8b	Class 8b He	eavy-Duty G	asoline Vehi	cles (>60,00	0 lbs. GVW	R)		
18	2006	2	15	1.4176015		14	LDDV	Light-Duty D	iesel Vehic	les (Passen	ger Cars)				
19	2006	2	17	0.0932514		15	LDDT12	Light-Duty D	iesel Truck	s 1 and 2 (0	- 6,000 lbs.	GWVR)			
20	2006	2	19	0.0550985		16	HDDV2b	Class 2b He	eavy-Duty Di	esel Vehicle	es (8,501 - 1	0,000 lbs. G	WWR)		
21	2006	2	21	0.0161134		17	HDDV3	Class 3 Hea	wy-Duty Die	sel Vehicles	s (10,001 - 1	4,000 lbs. G	WR)		
22	2006	2	23	0.4256532		18	HDDV4	Class 4 Hea	wy-Duty Die	sel Vehicles	3 (14,001 - 1	6,000 lbs. G	WR)		
23	2006	2	25	0.4782044		19	HDDV5	Class 5 Hea	wy-Duty Die	sel Vehicles	3 (16,001 - 1	9,500 lbs. G	WWR)		
24	2006	2	27	0.1488007		20	HDDV6	Class 6 Hea	wy-Duty Die	sel Vehicles	3 (19,501 - 2	6,000 lbs. G	WR)		
25	2006	2	29	0.2661943		21	HDDV7	Class 7 Hea	wy-Duty Die	sel Vehicles	3 (26,001 - 3	3,000 lbs. G	WWR)		
26	2006	2	31	0.0248124		22	HDDV8a	Class 8a He	eavy-Duty Di	esel Vehicle	es (33,001 -	60,000 lbs.	GWWR)		
27	2006	2	33	0.4540539		23	HDDV8b	Class 8b He	eavy-Duty Di	esel Vehicle	es (>60,000	lbs. GVWR)			
28	2006	3	11	3.3133812		24	MC	Motorcycles	(Gasoline)						
29	2006	3	13	2.538266		25	HDGB	Gasoline Bu	ises (Schoo	ol, Transit, ar	nd Urban)				
30	2006	3	15	4.7191779		26	HDDBT	Diesel Tran:	sit and Urba	an Buses					
31	2006	3	17	0.3104329		27	HDDBS	Diesel Scho	ol Buses						
32	2006	3	19	0.1834223		28	LDDT34	Light-Duty D	iesel Truck	s 3 and 4 (6,	,001 - 8,500	lbs. GWVR)	·		
33	2006	3	21	0.0536415											
34	2006	3	23	1.4169945		ļ.,					<u> </u>		— <u> </u>		

Figure 2-2. Example Input of VMT to EPA Conversion Tool – Harris County

For this study, ERG used a SAS program to process the VMT summary files provided by TTI, aggregated by MOBILE6 vehicle type and H-GAC roadway type. Table 2-2 presents the mapping ERG used for converting H-GAC roadway types to HPMS roadway types; a similar mapping will likely need to be developed for roadway types in other areas. The SAS program was written solely for use with the TDM output provided by TTI, and was intended as both a QC measure (to verify MOBILE6 inputs provided by TTI were consistent with the TDM outputs) and as a tool to generate ramp fractions and VMT for use in the EPA conversion tools. ERG's SAS program produced appropriately formatted VMT, ramp fractions, and other QC outputs⁸ for each county, which were subsequently used as input to the EPA converter tools discussed later.

⁸ ERG's SAS program also independently calculated MOBILE6-format facility VMT, speed VMT, and VMT by hour files. These files were used for QC purposes, and were checked against similar files already provided by TTI, The result was that ERG's facility VMT and VMT by hour files for Harris County very closely resembled those provided by TTI. Speed VMT differed in that ERG's speeds were not as widely distributed across the speed range as TTI's – this was later determined to be caused by ERG's use of the VMT summary, whereas TTI was using link-level VMT as a basis for its speed distribution, which is more accurate. Subsequently, VMT by hour and speed VMT from TTI were used as input to EPA's converter tools for all subsequent MOVES runs.

H-GAC Road Type Code	H-GAC Road Type Description	HPMS Road Type Code	HPMS Area Type	HPMS Road Type Description
1	Urban Interstate Freeways	23	Urban	Interstate
2	Urban Other Freeways	25	Urban	Other Freeways and Expressways
3	Toll Roads	25	Urban Other Freeways and Expressways	
4	Ramps (Frwy/Toll/Frontage)	Special Case	e, no direct lin	k, must map by ramp fraction
5	Urban Principal Arterials	27	Urban	Other Principal Arterial
6	Urban Other Arterials	29	Urban	Minor Arterial
7	Urban Collectors	31	Urban	Collector
8	Locals (Centroid Connectors)	33	Urban	Local
10	Rural Interstate Freeways	11	Rural	Interstate
11	Rural Other Freeways	13	Rural	Other Principal Arterial
12	Rural Principal Arterials	13	Rural	Other Principal Arterial
13	Rural Other Arterials	15	Rural	Minor Arterial
14	Rural Major Collectors	17	Rural	Major Collector
15	Rural Collectors	19	Rural	Minor Collector
40	Local (Intrazonals)	21	Rural	Local

Table 2-2. H-GAC Road Types Mapped to HPMS Road Types

Processing of HPMS-based VMT data

In the case of HPMS-based VMT, a different set of procedures must be used to arrive at activity data that can be used as format to the EPA converter tools, and subsequently, to the MOVES model itself. The HPMS VMT, also provided by TTI, is simplified and streamlined relative to the TDM-based VMT discussed above. The TDM based-VMT was provided for a number of specific vehicle types and road types, across all 24 hours of a given ozone season weekday. The HPMS VMT used in this analysis, however, is organized only by road types and area types, as seen in Table 2-3, which are less specific that what is available in the TDM-based VMT, a sample of which is presented previously in Figure 2-2.

Table 2-3. Harris County HPMS VMT Example

County	Harris								
Data Type	Area Type	Interstate	Freeway	Principal Arterial	Minor Arterial	Major Collector	Minor Collector	Local	Total
	Rural (<5,000)	681,075.940	0.000	886,330.630	776,455.580	531,412.352	133,798.075	492,808.352	3,501,880.929
	Small Urban (5,000-49,999)	0.000	0.000	177,295.000	81,002.190	50,515.680	0.000	14,614.040	323,426.910
VMT	Large Urban (50,000-199,999)	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
	Urbanized (200,000+)	30,049,085.890	21,045,993.960	18,072,516.123	19,274,509.064	8,199,444.036	0.000	3,651,528.589	100,293,077.662
	Total	30,730,161.830	21,045,993.960	19,136,141.753	20,131,966.834	8,781,372.068	133,798.075	4,158,950.981	104,118,385.501

Since MOVES requires VMT data formatted by source type, and the HPMS data provided was aggregated only by road type, it is necessary to convert the VMT basis for use in the model. This can be accomplished by extracting default VMT ratios from within MOVES itself , which can then be used to define the relationship between VMT by source type and VMT by road type, and thereby calculate representative VMT by HPMS source type.

In order to do this, ERG exported the HPMSVtypeYear table from the MOVES MySQL database and used the VMTGrowthFactor for the year of interest to project the 1999 HPMSBaseYearVMT to 2006. The general formula is shown here. A sample of the values calculated is shown in Table 2-4.

HPMSBaseYearVMT 2006 = HPMSBaseYearVMT 1999 * VMTGrowthFactor 2006

HPMSVtypeID	yearID	VMTGrowthFactor	HPMSBaseYearVMT
10	1999		1060000000
20	1999		1.56864E+12
30	1999		9.00735E+11
40	1999		7657000000
50	1999		70273700000
60	1999		1.32358E+11
10	2006	1.119	11861400000
20	2006	0.98953	1.55222E+12
30	2006	1.0398	9.36584E+11
40	2006	1.007	7710599000
50	2006	1.007	70765615900
60	2006	1.034	1.36858E+11

Table 2-4. Default HPMS VMT, Growth Factors, and 2006 Projected VMT

Next, ERG calculated the VMT fraction by HPMSVtypeID using the HPMSBaseYearVMT. The VMT fraction is equal to the HPMSBaseYearVMT for each HPMSVtypeID, divided by the sum of HPMSBaseYearVMT for all HPMSVtypeIDs, as illustrated by this equation. An example of the calculation is shown in tabular form in Table 2-5.

 $VMT fraction_{HPMSV iypelD} = \frac{HPMSBaseYearVMT_{HPMSV iypelD}}{sum(HPMSBaseYearVMT)}$

				VMT
HPMSVtypeID	yearID	HPMSBaseYearVMT	baseYearOffNetVMT	Fraction
10	2006	11861400000	0	0.004367237
20	2006	1.55222E+12	0	0.571508987
30	2006	9.36584E+11	0	0.344840023
40	2006	7710599000	0	0.002838958
50	2006	70765615900	0	0.026055122
60	2006	1.36858E+11	0	0.050389674
TOTAL		2.716E+12		

Table 2-5. Default MOVES VMT Fractions

ERG then applied the VMT fraction by HPMSVtypeID to the HPMS total VMT provided for each county by TTI, as shown in this equation, and in Table 2-6.

 $LOCALVMT_{HPMSVtypeID} = HPMSTotalVMT_{county} * VMT fraction_{HPMSVtypeID}$

	County	Brazoria	Chambers	Fort Bend	Galveston	Harris	Liberty	Montgomery	Waller
	Total VMT -	5,811,028.16	2,565,380.29	8,382,649.62	5,941,534.85	104,118,385.50	2,369,353.01	10,079,341.99	1,880,278.93
	HPMS	1	0	8	5	1	0	4	0
HPMSVtypeI									
D	VMT Fraction								
10	0.004367237	25378.13745	11203.62384	36609.01799	25948.09112	454709.6702	10347.52624	44018.87574	8211.623797
20	0.571508987	3321054.817	1466137.891	4790759.597	3395640.566	59504593.02	1354106.538	5760434.532	1074596.306
30	0.344840023	2003875.083	884645.7974	2890673.088	2048879.014	35904186.42	817047.7457	3475760.522	648395.4289
40	0.002838958	16497.2635	7283.006285	23797.98822	16867.76649	295587.6986	6726.493117	28614.82618	5338.032462
50	0.026055122	151407.0453	66841.29538	218410.9553	154807.4131	2712817.194	61733.78077	262618.4812	48990.89615
60	0.050389674	292815.8144	129268.6764	422398.9816	299392.0041	5246491.498	119390.9257	507894.7567	94746.64222

Table 2-6. HPMS VMT by Source Category

Finally, ERG formatted the local VMT data by HPMS vehicle type for import into MOVES according to the MOVES template for VMT by vehicle type. (Note that baseYearOffNetVMT is always set to zero for this purpose.) The HPMS-based VMT derived in this way negates the use of the first VMT converter tool described under Step 2 below, in that at this point we have effectively calculated total VMT by county and top level HPMS source category.

When using HPMS-based VMT as a source of activity data for MOVES, users must not only assign appropriate source types to the VMT described above, but also derive road type distributions for the data.⁹ In order to perform this calculation for the HPMS data, ERG mapped the Houston-Galveston Area Council (H-GAC) road types listed in the TTI tab files to the standard HPMS road types. In cases where the mapping was not transparent, ERG used its best engineering judgment to assign the H-GAC road types to the most appropriate HPMS road type category. Table 2-7 shows the mapping.

H-GAC Road Type Code	H-GAC Road Type Description	HPMS Road Type Code	HPMS Area Type	HPMS Road Type Description
1	Urban Interstate Freeways	23	Urban	Interstate
2	Urban Other Freeways	25	Urban	Other Freeways and Expressways
3	Toll Roads	25	Urban	Other Freeways and Expressways
4	Ramps (Frwy/Toll/Frontage)	Special Case	, no direct lin	k, must map by ramp fraction
5	Urban Principal Arterials	27	Urban	Other Principal Arterial
6	Urban Other Arterials	29	Urban	Minor Arterial
7	Urban Collectors	31	Urban	Collector
8	Locals (Centroid Connectors)	33	Urban	Local
10	Rural Interstate Freeways	11	Rural	Interstate
11	Rural Other Freeways	13	Rural	Other Principal Arterial
12	Rural Principal Arterials	13	Rural	Other Principal Arterial
13	Rural Other Arterials	15	Rural	Minor Arterial
14	Rural Major Collectors	17	Rural	Major Collector
15	Rural Collectors	19	Rural	Minor Collector
40	Local (Intrazonals)	21	Rural	Local

Table 2-7. H-GAC Road Types Mapped to HPMS Road Types

ERG assigned the HPMS VMT provided by TTI to the appropriate road types. The VMT for the urban HPMS road types (codes 23, 25, 27, 29, 31, and 33) was obtained by summing the

⁹ For TTI-based VMT, the calculation of road type distribution was handled by the EPA converter tool, as discussed in the following section.

HPMS VMT for small urban areas, large urban areas, and urbanized areas. Then, the HPMS road types were mapped to the MOVES road types. Table 2-8 illustrates the HPMS road type to MOVES road type mapping, which was derived from calculation sheets contained in the EPA converter tools discussed below in Section 2.2.

HPMS		HPMS		MOVES
ROAD TYPE	HPMS	ROAD TYPE	MOVES	ROAD TYPE
CODE	AREA TYPE	DESCRIPTION	ROAD TYPE ID	DESCRIPTION
11	Rural	Interstate	2	Rural restricted access
13	Rural	Other Principal Arterial	3	Rural unrestricted access
15	Rural	Minor Arterial	3	Rural unrestricted access
17	Rural	Major Collector	3	Rural unrestricted access
19	Rural	Minor Collector	3	Rural unrestricted access
21	Rural	Local	3	Rural unrestricted access
23	Urban	Interstate	4	Urban restricted access
25	Urban	Other Freeways and Expressways	4	Urban restricted access
27	Urban	Other Principal Arterial	5	Urban unrestricted access
29	Urban	Minor Arterial	5	Urban unrestricted access
31	Urban	Collector	5	Urban unrestricted access
33	Urban	Local	5	Urban unrestricted access

Table 2-8. HPMS Road Types Mapped to MOVES Road Types

Once these mapping schemes were completed, ERG summed the VMT by MOVES road type. The next step in the process was to obtain the MOVES default VMT fraction by vehicle type, using the same methodology described above in the HPMS-based VMT Conversion section. After projecting 2006 VMT from 1999 base VMT using factors supplied in the HPMSVtypeYear table in MOVES, ERG calculated a VMT fraction by HPMS type using default VMT ratios, an example of which is shown in Table 2-9.

 Table 2-9. Example MOVES Default VMT Fraction by Vehicle Type ID

HPMSVtypeID	VMT Fraction
10	0.004367237
20	0.571508987
30	0.344840023
40	0.002838958
50	0.026055122
60	0.050389674

ERG then multiplied the default VMT fraction (by vehicle type) with the total VMT (by MOVES road type) to obtain the VMT aggregated by HPMS Vehicle type and MOVES road type, according to the following equation.

Following the equation for RoadTypeVMTFraction provided below, ERG then divided the VMT by HPMS vehicle type and MOVES road type with the sum of all VMT for a given HPMS vehicle type in order to obtain the VMT distribution by road type that is required for input to MOVES:

 $RoadTypeVMTFraction = \frac{VMT_{HPMSvehicletypeandMOVESroadtype}}{[Sum(VMT_{HPMSvehicletypeandMOVESroadtype})]_{HPMSvehicletypeandMOVESroadtype}]}$

All road type distribution calculations performed in this section are provided for reference electronically in Appendix A in the "Calculate HPMS VMT by HPMS vehicle type" spreadsheet.

2.2 Use of EPA Spreadsheet Converter Tools

Because EPA understands that many users of MOVES will already be familiar with MOBILE6 and NMIM, and likely have on hand previously performed analyses for their areas of interest that use those models, the agency has developed a number of converter tools that allow for transition of older data to MOVES. These spreadsheet tools were most recently updated in February 2010, and are freely available at EPA's website¹⁰. ERG made extensive use of these tools in adapting TTI's previously developed MOBILE6 files into a form usable in MOVES, and we expect that others users will want to do the same. Each of the converter tools used during this study have been included electronically in Appendix A, and are discussed in additional detail below.

VMT Converter Tool

Having processed the TDM-based VMT using SAS, ERG used the first of several EPA spreadsheet tools employed for this effort, the VMT Converter Tool, to prepare inputs for MOVES. The specific converter used¹¹ was based on translation of specific VMT by the 28 MOBILE6 vehicle types, listed under "Set 2" on EPA's Tools for MOVES page. This tool is necessary to convert both VMT and road type fractions from a MOBILE6 vehicle type basis to a MOVES source type basis^{12.} Note that although we used only one of the VMT converter tools

¹⁰ http://www.epa.gov/otaq/models/moves/tools.htm

¹¹ http://www.epa.gov/otaq/models/moves/tools/vmt-converter-veh28-20100209.xls

¹² It is important to note that MOBILE6 vehicle types are developed primarily on a vehicle weight basis, while MOVES source types focus more on usage classification of a particular vehicle. This distinction arises often while converting information from a MOBILE6 basis to a format useable in MOVES.

EPA provides on the Tools for MOVES website, there are seven other such VMT converters available. These converters are designed to assist users with conversion of VMT on a number of vehicle type bases (either 28, 16, 12, or 8 vehicle types), and based on either specific VMT or VMT/road type fractions. Users of MOVES are encouraged to closely examine EPA's available converter tools to determine which is best suited for their own application.

A separate converter spreadsheet was created for each of the eight counties of interest for this effort. This particular tool requires as input ramp fractions, hourly VMT fractions, monthly VMT fractions, and VMT aggregated by vehicle class and road type, each of which are described below:

- The input ramp fraction calculated using SAS was input for each of the three road types (11, 23, and 25) specified in the Import Ramp Fractions sheet. This was done primarily because the ramp VMT provided by TTI was not associated with a particular road type. Therefore, ramp fractions were assumed to apply equally to each road type. Users with a more specific association between road type and ramp VMT could use more detailed fractions.
- VMT by hour were copied directly from TTI's MOBILE6 inputs for each county into the Import HourlyVMTFractions sheet.
- VMT aggregated by class and road type obtained from SAS processing were copied directly into the Import vClass28 VMT sheet. An example screenshot of this sheet was previously presented in Figure 2-2.
- Note that information was NOT supplied for the Import CountyVMTMonthAllocation sheet, because in re-creating the TTI inventory for the HGB area, modeling was only necessary for a single month (July) and single day. If a user wished to populate this tab for use in MOVES, he could using derive it from an NMIM county database, if available, per the SQL script provided on the Instructions sheet in the converter tool.

The output from the converter tool includes VMT by HPMS source type, monthly VMT fractions by source type, hourly VMT fractions by source type and vehicle type, road type distribution by source type, and a converted ramp fraction. The ramp fraction and road type distribution produced here were directly imported into MOVES, as described later. The monthly fractions produced, meanwhile, were ignored in favor of those produced by EPA's Average Annual Daily (AAD) VMT converter tool, because using the default monthly weighting provided in this tool for VMT in July (1.0871 in a non-leap year) would have over-estimated VMT for the scenario we were modeling. The calculated VMT itself, as shown in Figure 2-3, was in turn used as input to the AADVMT tool.

11 11 11	HARR-vmt-conver	ter-veh28	-20100209.xls									
	A	В	С	D	E	F	G	Н		J	K	L
1	HPMSVtypelD	YearlD	HPMSBaseYear∨MT	BaseYearOffNet∀MT								
2	10	2006	96544	0								
3	20	2006	57948550	0								
4	30	2006	33246885	0								
5	40	2006	347767	0								
6	50	2006	1025230	0								
7	60	2006	3879260	0								
8												
9												
10												
12												
12												
14												
15												
16												
17												
18												
19												
20												
21												
22												
23												
24												
25												
26												
27												
20												
30												
31												
32												
33												
34												
35												
36												
37							<u> </u>			<u> </u>		
H 4	I → M \HPMSvTy	/peYear /	MonthVMTFraction 🔏 HourVN	1TFraction / RoadTypeDis	tribution ,	(RoadType	e 🖉 Instruct	ions / Imp	oort vClass28	в VMT /	Import Cou	intyVMTMor

Figure 2-3. VMT Output from EPA Conversion Tool – Harris County

AADVMT Calculator Tool

The AADVMT tool¹³ is the second of EPA's tools ERG used to develop MOVES inputs. This tool is necessary to convert Average Annual Daily VMT, such as that provided to us by TTI, into annual VMT, which is required as input to MOVES whether a user is performing an annual analysis or not. The AADVMT tool calculates annual VMT based on provided AAD VMT, and weights the VMT appropriately across months and days (weekend or weekday) of interest. As before, a separate AADVMT spreadsheet was created for of the eight counties to be modeled.

To use the AADVMT tool, the HMPS VMT obtained from the HPMSvTypeYear output sheet in the VMT converter tool shown above was copied (per guidance in the Instructions sheet) to the Import HPMS AADVMT and Factors sheet in the AADVMT calculator. In addition, all of the monthly and weekend-day adjustment factors on that sheet were changed from their default values to 1.0 to reflect that, for this inventory, we are ultimately only attempting to model emissions for a single day in a single month (thus, our daily VMT did not need to be re-weighted

¹³ http://www.epa.gov/otaq/models/moves/tools/aadvmtcalculator_hpms.xls

on an monthly or weekend-day basis for conversion to annual VMT). An example of the inputs to the AADVMT tool is shown in Figure 2-4. The outputs from the AADVMT calculator (in the HPMSVTypeYear, monthVMTFraction-calculated, and dayVMTFraction-calculated sheets) were ultimately used for inputs to MOVES through the County Data Manager, which is described in more detail later in this document.

圈)	HARRaadvmtcalculator.xls										
	A	В	С	D	E	F	G	H	I	J	k
1	HPMSVtvpelD	vearID	AADVMT		HPMSVTvpelD	monthID	Month	Monthly Adjustment Factor	Weekend-Day Adjustment Factor		
2	10	2006	96544		10	1	Januarv	1.0000	1.0000		
3	20	2006	57948550		10	2	February	1.0000	1.0000		
4	30	2006	33246885		10	3	March	1.0000	1.0000		
5	40	2006	347767		10	4	April	1.0000	1.0000		
6	50	2006	1025230		10	5	Mav	1.0000	1.0000		
7	60	2006	3879260		10	6	June	1.0000	1.0000		
8					10	7	July	1.0000	1.0000		
9	Note: Not all H	PMSVTypeID's	s have to be ent	ered above,	10	8	August	1.0000	1.0000		
10		but each sho	uld only be ente	ered once.	10	9	September	1.0000	1.0000		
11					10	10	October	1.0000	1.0000		
12	WARNING: DO	NOT DELETE	OR REARRANGE	ANY ROWS	10	11	November	1.0000	1.0000		
13		FOR ADJUST	MENT FACTORS	5 AT RIGHT!	10	12	December	1.0000	1.0000		
14					20	1	January	1.0000	1.0000		
15	MOVES Default	ts for Adjustm	ent Factors at ri	ght:	20	2	February	1.0000	1.0000		
16	Monthly Adjust	ment Factors:			20	3	March	1.0000	1.0000		
17		Leap Year	Non-leap Year		20	4	April	1.0000	1.0000		
18	January	0.8607	0.8605		20	5	May	1.0000	1.0000		
19	February	0.9090	0.9088		20	6	June	1.0000	1.0000		
20	March	0.9626	0.9623		20	7	July	1.0000	1.0000		
21	April	1.0016	1.0013		20	8	August	1.0000	1.0000		
22	May	1.0305	1.0303		20	9	September	1.0000	1.0000		
23	June	1.0742	1.0740		20	10	October	1.0000	1.0000		
24	July	1.0873	1.0871		20	11	November	1.0000	1.0000		
25	August	1.1003	1.1001		20	12	December	1.0000	1.0000		
26	September	1.0305	1.0303		30	1	January	1.0000	1.0000		
27	October	1.0189	1.0187		30	2	February	1.0000	1.0000		
28	November	0.9764	0.9761		30	3	March	1.0000	1.0000		
29	December	0.9447	0.9445		30	4	April	1.0000	1.0000		
30					30	5	May	1.0000	1.0000		
31	Rural Weekend	l day Adjustm	ent Factor:	0.9665	30	6	June	1.0000	1.0000		
32	Urban Weeken	d-day Adjustn	nent Factor:	0.7793	30	/	July	1.0000	1.0000		
33					30	8	August	1.0000	1.0000		
34					30	9	September	1.0000	1.0000		
35					30	10	Uctober	1.0000	1.0000		
36					30	10	November	1.0000	1.0000		
37					30	12	December	1.0000	1.0000		
20					40	1	January Eobruore	1.0000	1.0000		
39					40	2	February Moroh	1.0000	1.0000		
40					40	J A	Anvil	1.0000	1.0000		
41					40	4 5	May	1.0000	1.0000		
42					40	C	luno	1.0000	1.0000		
43					40	7	July	1 0000	1.0000		
	↓ • • •\\ HPMSVT	vneYear / m	nnthVMTEraction-r	alculated / i	davV/MTEraction-c	alculated	7 Instructio	ns \Imnort	HPMS AADVM	F and Facto	ors /

Figure 2-4. AADVMT Input – Harris County

Age Distribution

Yet another converter tool¹⁴ provided by EPA facilitates the transformation of MOBILE6-formatted registration distribution data into MOVES-compatible vehicle age distribution data files. ERG input TTI's MOBILE6 registration data to the tool, which expands registration data across thirty-one years, applies the registration distribution to the vehicle count for the calendar year of interest, and maps the total vehicle counts, by age, to one of the thirteen appropriate MOVES source types. The vehicle counts are then renormalized for each of the thirteen source types. The outputs of the converter tool, formatted appropriately for import into MOVES to populate the SourceTypeAgeDistribution table, include source type, year, vehicle age, and vehicle distribution fraction.

Speed Distribution

EPA also provides a tool¹⁵ that converts MOBILE6-formatted speed distribution files to the format required by MOVES. (We used the MOBILE6-based version of the tool, but EPA provides an NMIM-based version as well for users with NMIM-formatted speed distributions.) ERG input TTI's MOBILE6 speed distribution data to the tool, which expands MOBILE6 fourteen-bin, VMT-based speed distribution files to the MOVES sixteen-bin, time-based speed distribution format. The outputs of the speed distribution converter tool, formatted appropriately for import directly into MOVES to populate the AvgSpeedDistribution table, include source type, road type, hour and day, average speed bin, and speed distribution fraction.

2.3 Preparation of Other Inputs

In addition to the various outputs from the converter tools described in the previous section, other inputs are also necessary for calculating emissions inventories at the county level in MOVES. These include vehicle populations, inspection and maintenance (I/M) program parameters, fuel characteristics, and ambient meteorological conditions. These model inputs were developed by ERG, are provided electronically as part of the MOVES County Data Manager input databases included in Appendix A, and are described in the section that follows.

¹⁴ http://www.epa.gov/otaq/models/moves/tools/reg-distrib-converter-veh16-20100209.xls

¹⁵ http://www.epa.gov/otaq/models/moves/tools/averagespeedconverter_mobile6.xls

Vehicle Population

EPA's *Technical Guidance*¹⁶ prescribes the use of state motor vehicle registration data for developing vehicle populations in MOVES, which are used to calculate both start and evaporative emissions. ERG obtained 2006 registration data for each county of interest in this study from the Texas Department of Motor Vehicles. This data was aggregated by MOBILE6 vehicle class. In order to prepare the data for modeling in MOVES, ERG converted the vehicle populations provided to MOVES source types by using the mapping ratios available in Table A.1 of the Appendix in the *Technical Guidance*.

Although usage of registration data to develop vehicle populations is suggested by EPA in the Technical Guidance, users should understand that the vehicles registered in a county for a given point in time do not necessarily correspond to the VMT driven over that same period in the county. For example, commuters living in Fort Bend county may drive a significant portion of their vehicle miles in Harris county. In this example, using registration data as a population surrogate may lead to overestimation of start and evaporative emissions in Fort Bend county, while underestimating those same emissions in Harris County. While a better alternative for determining representative source populations does not currently exist, it is an important issue for users to be aware of.

Ideally, users will be able to develop population data files for import into MOVES using state and local resources, such as state motor vehicle registration data, local transit authorities, and/or data provided by other stakeholders. However, it has been our experience that this data can sometimes be difficult to obtain at the level of disaggregation required for import into MOVES. If adequate resources for development of vehicle populations are lacking, users can follow section 3.3 of EPA's Technical Guidance to calculate local vehicle population based on their VMT data.

Because we originally had difficulty obtaining registration data ourselves, ERG went through the process of developing populations surrogates based on VMT. As described in the EPA Technical Guidance, the first step in deriving local population estimates based on local VMT data is to perform a MOVES modeling run using MOVES default population and VMT data. To do this, ERG selected "National" as the modeling domain, and "County" as the geographic selection type. We then selected the county of interest, along with the 2006 year, for the evaluation. For the cases being evaluated in this exercise, the selections for time span were a

¹⁶ "Technical Guidance on the Use of MOVES2010 for Emission Inventory Preparation in State Implementation Plans and Transportation Conformity," EPA-420-B-10-023. United States Environmental Protection Agency. April 2010. Available at http://www.epa.gov/otaq/models/moves/420b10023.pdf

24-hour period for a weekday in the month of July. All vehicle and fuel types (except the placeholder fuel type) were selected, as well as all road types for this modeling scenario. Since the only interest here is obtaining the default population to VMT ratio, selection of a particular pollutant is not relevant. However, the model required the selection of at least one pollutant, so Oxides of Nitrogen was selected for these runs. Finally, output data selections were made, which are important to ensure the required information for calculating the default MOVES population to VMT ratios is present. For the evaluations undertaken here, the following selections were made:

- 24-Hour Day,
- Output VMT data,
- Output Population,
- Output Time Units as Days, and
- Output VMT units as Miles.

Once the model runs were complete, ERG exported the ActivityType table and the MOVESActivityOutput table from the output database generated by the model. Using this data, ERG calculated the MOVES default population to VMT ratio for each source type by dividing the MOVES default population by the MOVES default VMT in the outputs.

Next, ERG obtained the local VMT data, by source type, for the area of interest (which was obtained by summing the VMT by county as calculated in EPA's VMT Converter Tool spreadsheet). Finally, the local vehicle population, by source type, was calculated by applying the default MOVES population to default MOVES VMT ratio to the local VMT, by source type, by county. This calculated population is what can ultimately be used for input to MOVES if other sources of population data are unavailable.

I/M Programs

Information on I/M programs in the HGB area was also provided by TTI in the form of inputs to MOBILE6. Note that only five of the eight counties modeled are affected by I/M – Brazoria, Fort Bend, Galveston, Harris, and Montgomery. Although there are no converter tools provided by EPA to adapt MOBILE6 I/M information into a format usable by MOVES, doing so manually is a fairly straightforward process. However, there are a few issues to be aware of when doing so.

As specified in the MOVES User's Guide¹⁷, the most straightforward approach to making changes to an I/M program in MOVES is to begin with the MOVES default I/M information for the particular county being modeled, and adapt the information in the defaults as necessary. This can be most easily done by exporting the default I/M values using the feature provided in the County Data Manager into an Excel Spreadsheet.

In order to most accurately represent the inventory modeled by TTI, ERG changed the test standards from default values to match those specified in MOBILE6 inputs. In doing so, we added new records to reflect the I/M parameters specified in MOBILE6 inputs and included a value of Y for the useIMyn field as suggested in the MOVES User's Guide. We changed the useIMyn field to N for existing records in the IM table. Specifically, we changed the testStandardsID from 24 to 23 for the exhaust I/M program affecting light duty vehicles, represented by source types 21, 31, and 32 in MOVES (passenger cars, passenger trucks, and light commercial trucks, respectively). This reflected the ASM 2525 Final Cutpoints being used in the MOBILE6 inputs, as opposed to the ASM 2525/5015 Phase-in Cutpoints in place in the MOVES defaults. Similarly, the testStandardsID was changed from 43 to 45 for an evaporative program affecting light-duty vehicles, which represented an OBD Evap and Gas Cap program, as opposed to only an Evap program. In addition, ERG also added an I/M program consisting of a two-mode, 2500 RPM/Idle Test for heavy duty source types 41, 42, 43, 51, 53, 54, 61, 62, in addition to the program that already existed for heavy-duty source type 52.

One of the challenges of applying I/M programs as specified in MOBILE6 is that MOBILE6 vehicle types do not map precisely with MOVES source types. In particular, MOVES source types 31 and 32 can encompass MOBILE6 source types LDGT1 all the way up to HDGV5. In section 3.10.6 of the Technical Guidance, EPA recommends calculating a compliance factor based not only on compliance rate and waiver rate (both provided in MOBILE6 inputs), but also on regulatory class coverage. Calculating the regulatory class coverage is now fairly straightforward, as the information in Table A.3 of the April 2010 *Technical Guidance* Appendix (Gasoline I/M Regulatory Coverage Adjustments) provides the proper conversion factors, along with example calculations.

Once users have appropriately modified the default I/M program for the modeling area of interest and appropriately calculated conversion factors for each I/M program, pollutant, source type, and model year combination, the spreadsheet created can be imported back into MOVES as described later.

¹⁷ Available both at http://www.epa.gov/otaq/models/moves/420b09041.pdf and through the MOVES graphical interface

Fuel Formulation and Supply

MOVES uses two tables to characterize information with respect to fuels. The first, Fuel Supply, lists fuel formulations, along with their respective market shares, on a monthly and yearly basis. The second table, Fuel Formulation, lists a number of descriptive parameters for the various fuel formulations. In order to populate these two tables, ERG initially culled information on fuels used in the preparation of TTI's inventory from their MOBILE6 input files, as well as the accompanying 2005/2006 On-Road Mobile Source, Ozone Episode Modeling Emissions Inventories for the HGB Eight-Hour Nonattainment Area report. Reid vapor pressures, oxygenate weight percentages, and sulfur content for both gasoline and diesel fuels were specified in the MOBILE6 runs.

MOBILE6 oxygenates are listed in terms of weight percent, and must be converted to volume percent for use in MOVES. This was done using ratios specified on page 166 of the User's Guide to MOBILE6.1 and MOBILE6.2^{18.} Sulfur content and RVP provided in MOBILE6 were directly input to the fuel formulation sheet. The other fields required in the fuel formulation sheet (e.g., aromatic content, e200, cetane index, and so forth) were populated using the existing fuel formulation defaults in MOVES. The fuel supply sheet was populated with two new fuel formulation IDs for July 2006, one representing gasoline and one diesel, each with 100% market share. We felt this most accurately reflected the data available in the TTI MOBILE6 inputs. Note that per the Technical Guidance, creating some sort of single average fuel to be representative of a given area is discouraged – rather, multiple fuels in use for a given area should be input, and market share adjusted appropriately for each of those fuels. In this case, however, ERG created a single fuel, since that most closely mirrored the inputs used in TTI's MOBILE6 input files.

This initial attempt to create a representative fuel supply and formulation uncovered a couple of notable bugs in MOVES2010. The first bug involved creation of new fuel formulation IDs for input to MOVES. When a user creates and imports new fuel formulation IDs, MOVES does not currently "zero out" the market share of existing fuel formulation IDs, which leads to overestimation (approximately two to four times) of pollutants in model calculations. To avoid this problem, EPA suggests that users should currently adjust data associated only with existing fuel formulation IDs, and not create new IDs.

The second bug that was discovered is related to fuel type IDs. ERG's initial import contained a fuel type ID of 12, which represents E10 fuel. The ethanol volume percentage associated with this fuel, as calculated from the MOBILE6 inputs, was 9.28%. This is less than

¹⁸ EPA420-R-030-010, August 2003, available at http://www.epa.gov/otaq/models/mobile6/420r03010.pdf

the range of 10-20% that MOVES expects for that particular fuel type ID. Therefore, MOVES did not handle calculation of VOC emissions correctly, and underestimated them by approximately an order of magnitude^{19.} In this particular case, the workaround suggested by EPA was to use a different fuel type ID of 13, which corresponds to E8 fuel and has an expected ethanol range that includes the 9.28% specified.

Because of the issues surrounding emissions calculations related to fuel formulations in MOVES, EPA²⁰ recommended that ERG use the default Fuel Formulation and Fuel Supply provided in MOVES for the HGB area instead of importing or adjusting custom formulations, until the existing bugs are fixed. The most straightforward way to do this is to export MOVES default fuelformulation and fuelsupply tables via the interface, and then reimport them, as suggested in the MOVES User's Guide. In most cases, modeling with the default Fuel Formulation and Fuel Supply for a given area should provide representative outputs.

Meteorological Data

MOVES provides a template for importing hourly temperature and relative humidity data. ERG simply formatted the hourly temperature and relative humidity data from the MOBILE6 input files according to the template in an Excel spreadsheet. Although this is a fairly straightforward conversion that ERG performed manually, EPA also provides two meteorological data converter tools on their website (one for MOBILE6-formatted data, and one for NMIM-formatted data) for modelers to use.

2.4 MOVES Model Setup

The procedures used for setting up and configuring MOVES input files (also known as run specifications, or "runspecs") and input databases were fairly similar across all modeling scenarios performed, differing only in external inputs provided to the model. A separate MOVES input runspec and associated database was created for each county of interest, using default MOVES drive cycles, for both TDM-based VMT, as well as HPMS-based VMT. The same runs were re-created using ERG's drive cycles developed from the Kansas City Emissions Study (discussed in detail in Section 3 below). A total of 32 MOVES runs were performed.

Model Option Selection

The first step in setting up these runs was to make appropriate selections for each model option on the submenus listed in the main MOVES interface (see Figure 2-5). It is very

¹⁹ MOVES tables of interest related to this bug include etohbin and fuelsubtypeID.

²⁰ Per multiple conversations with Sean Hillson

important to note that model option selections for all of the submenus pictured below must be made before entering data via the County Data Manager, or the user may experience difficulties.

Figure 2-5. MOVES Interface Example

Selections were made for each of the submenus pictured, and they are described below.

- **Description** A text description was entered in this field. A typical description might consist of text like "USDOT MOVES Runs, Harris County 2006, TDM VMT Basis".
- Scale A County scale, along with an Inventory calculation type, was used for all MOVES performed for this analysis.
- **Time Spans** Hourly aggregation was selected for a July weekday in 2006. All 24 hours of the day were modeled.
- Vehicles/Equipment -On Road Vehicles: Compressed natural gas (CNG), Diesel, Electricity, and Gasoline fuel types were selected, and combined with all available source use types, for a total of 52 fuel/source combinations. Note that this produces warning messages for certain fuel/source combinations that are

currently not present in the MOVES database (for example, diesel motorcycles, gasoline combination long-haul trucks, and gasoline intercity buses, etc.).

- **Road Type** All five available road types were selected.
- **Pollutants and Processes** Carbon Monoxide, Oxides of Nitrogen, Volatile Organic Compounds (VOCs), Non-Methane Hydrocarbons, Total Gaseous Hydrocarbons, and Methane were all selected. The latter three pollutants are required, as indicated by the interface during selection, for calculation of VOCs. All process types were selected by checking the box on the far left side of the interface for each pollutant.
- Manage Input Datasets: No selection was made in this submenu.
- **Strategies**: No selection was made in this submenu.
- **Output General Output**: In this submenu, it is important to create an output database with appropriate descriptive nomenclature, particularly when many different such databases will be residing on a single server. For this study, we selected units of tons for mass, million BTU for energy, and miles for distance. In the Activity section, we checked boxes for distance traveled and population, as both are important when performing QC on outputs.
- **Output -Output Emissions Detail**: A time period of 24-hours was selected, along with a location of County, for ease of comparison with the daily emissions calculated on a by-county basis in TTI's inventory. For future detailed analysis, we selected calculation of emissions by emissions process, both by road type and source use type.
- Advanced Performance Features: No selection was made in this submenu.
- **Geographic Bounds**: Having fully populated all of the model options in each of the above submenus, ERG then returned to the Geographic Bounds submenu. For each run performed, a single county of interest was selected. We then clicked on the Enter/Edit Data button to begin importing county-specific information into an input database via the County Data Manager.

County Data Manager

The next step in the process is to create an input database, using appropriate descriptive nomenclature, that will store county-specific data for the model. This database must then be populated. We did so using the processed data described in the previous section, for each county and VMT basis modeled. Before a MOVES run can be performed, data must be imported into each of the tabs shown in the County Data Manager, pictured in Figure 2-6.

📥 MOVES	County Dat	ta Manager									
🕝 Ramj	Fraction	🙆 Road Type	e Distribution	I 🙆	Source Type	Population	ı 🛛 🔯 Vehicl	e Type	VMT 🛛 🙆 I/M Pro	ograms Tools	
RunSpe	c Summary	Database	🛛 🔯 Age [Distribu	rtion 🍸 🙆 /	verage S	peed Distribut	ion	Fuel Supply	Suel Formulation	🛛 🔯 Meteorology Data
Select or o	reate a data	base to hold th	e imported d	lata.							
Server:	localhost										
Database:				-	Create Data	abase	Refresh				
Log:					Clear A	ll Importe	d Data				
											Database
											Done

Figure 2-6. County Data Manager Example

ERG used a number of different spreadsheets to populate the County Data Manager. These spreadsheets are listed in Table 2-10, and have been provided electronically in Appendix A for further reference. The naming convention used here is not particularly meaningful with respect to MOVES; any filename can be used during the import process. Because the County Data Manager requires a number of different inputs to be properly populated, users may find it helpful to use a table such as the one shown here for QC purposes in creating their own MOVES input databases.

County Data		
Manager Input	TTI VMT Basis Data Source	HPMS VMT Basis Data Source
	[County]-vmt-converter-veh28-	
	20100209.xls	
Ramp Fraction	RoadType tab	Defaults Used
	TTIRoadTypeDist.xls	HPMS_RoadTypeDist.xls
Road Type Distribution	[County] tab	MOVES[County] tab
	TXDMV_Converted_Pop.xls	TXDMV_Converted_Pop.xls
Source Type Population	[County] tab	[County] tab
		[County]-
	[County]aadvmtcalculator.xls	HPMSaadvmtcalculator.xls
HPMSVTypeYear	HPMSVTypeYear tab	HPMSVTypeYear tab
		[County]-
	[County]aadvmtcalculator.xls	HPMSaadvmtcalculator.xls
monthVMTFraction	monthVMTFraction-calculated tab	monthVMTFraction-calculated tab
		[County]-
	[County]aadvmtcalculator.xls	HPMSaadvmtcalculator.xls
dayVMTFraction	dayVMTFraction-calculated tab	dayVMTFraction-calculated tab
	[County]-vmt-converter-veh28-	[County]-
	20100209.xls	HPMSaadvmtcalculator.xls
hourVMTFraction	HourVMTFraction tab	hourVMTFraction-default tab
	Revised_IM.xls	Revised_IM.xls
I/M Programs	[County]IM	[County]IM
	RegData_HGBarea.xls	RegData_HGBarea.xls
Age Distribution	[County]MOVES tab	[County]MOVES tab
Average Speed	DOT_TTI_Speed	DOT_TTI_Speed
Distribution	[County] tab	[County] tab
Fuel Formulation	Defaults Used	Defaults Used
	FuelSupply_HGBArea.xls	FuelSupply_HGBArea.xls
Fuel Supply	[County] tab	[County] tab
	MetTemplate_HGBarea.xls	MetTemplate_HGBarea.xls
Meteorology Data	[County] tab	[County] tab

Table 2-10. Summary of Inputs to County Data Manager

There are a few things to keep in mind when using the County Data Manager. First of all, MOVES sometimes will return errors during an import of data directly from certain sheets in the EPA VMT tool. This can be resolved by copying data from the VMT tool into a blank spreadsheet, and then importing that sheet instead. Secondly, Fuel Formulation data should be imported before Fuel Supply data; if not imported in that order, MOVES will return an error regarding unknown formulations. Finally, note that after importing all four of the VMT sheets required for the Vehicle Type VMT tab, the red X in the interface may not change to a green

check, even when you've imported valid data. This is a known bug and is documented in the current MOVES2010 Errata/Information Sheet^{21.}

The above procedures describe the methodology for creating a single MOVES run – in this case, for a particular county and VMT basis. However, as previously discussed, 32 different MOVES runs were set up and executed for this analysis, and it would have been fairly tedious to set up all 32 of those runs manually within the MOVES interface. Fortunately, MOVES provides a tool to assist with import of numerous sets of county-specific data. This tool, which generates an XML file to assist with importing, can be accessed on the Tools tab of the County Data Manager by clicking the "Generate XML Importer File" button.

The XML generator was used to create an XML file, which was in turn used to import data into the input database for a given county outside of the MOVES interface, at the command line. When generating MOVES runs for multiple counties, ERG found that it is a fairly straightforward process to run the County Data Manager for a single county, use the XML generator tool to prepare an XML importer template, and then alter that template in a text editor to produce importers for multiple counties. These XML files can then be called from the command line, or in a batch file, to create multiple input databases at once. The procedure for doing so is documented in Appendix C of the MOVES User's Guide. ERG has provided example XML importers generated for this analysis, as well as the batch file created to perform multiple imports at once, in Appendix A of this document.

In addition to creating multiple input databases using the XML generator, it was also necessary for ERG to create the 32 MOVES runspecs described earlier. We found the most efficient way to do this was to start by creating a runspec for a given county using the MOVES graphical interface, and save that file, which is stored by MOVES in XML format. Next, ERG edited the XML runspec manually in a text editor for each county of interest. This is a simple process which involved changing a few references to the county modeled, as well as input and output database paths, within the XML runspec file. These runspec files are also included for reference in Appendix A.

Having created model runspecs and input databases for the 32 model runs, ERG prepared to execute each of the runs in MOVES. Figure 2-7 presents a summary of inputs necessary for preparing county-level MOVES runs, and issues to keep in mind while doing so.

²¹ EPA-420-B-09-043, available at http://www.epa.gov/otaq/models/moves/420b09043.pdf

Figure 2-7. MOVES Input Preparation Quick Reference

Inputs Needed For County-Level Inventory Calculations in MOVES

- Activity data in the form of TDM-based or HPMS based VMT. If possible, obtain data disaggregated by source type and road type. Remember that activity data may require a significant amount of pre-processing, even prior to use of EPA's converter tools.
- **Ramp Fractions**. Defaults may be used, but users are encouraged to calculate these based on available VHT when possible.
- **EPA Converter Tools**. While not strictly required, many users will find these helpful in the process of preparing the following required inputs to the model:
 - Annual VMT
 - Road Type Distributions
 - Month, Day and Hour VMT Fractions
 - Age Distribution
 - Speed Distribution
- **Source Type (Vehicle) Populations.** These are needed for calculation of emission from vehicle starts and evaporative processes.
- **I/M Program Information**. This will not apply to all areas, but if it is required, program test information, along with applicability to particular source types and model years, will be necessary.
- **Fuel Formulation and Supply**. This includes not only physical characteristics of fuels to be modeled, but also information on fuel market share for a given area.
- Ambient Meteorological Data.

Issues to Keep in Mind During Model Input Development

- Review the latest version of the MOVES Errata before beginning calculations with the model
- Does the total VMT output from the VMT converter match the total input across vehicle/source types? If not, this may indicate a problem with VMT processing.
- Are you receiving any warnings from the MOVES interface during import of information to the County Data Manager? If so, check your inputs carefully, as MOVES may still allow you to perform calculations even when there is an error in an input file.
- Using the XML Importer File Tool to generate scripts for multiple counties can be a big time saver if you need to set up multiple MOVES runs. When using XML files to import information into multiple County Data Manager databases, closely check the syntax of input files before execution to avoid errors.
- Double check your model options to ensure you are modeling exactly what you intend to model with respect to time span, source type, road type, pollutants. Ensure your input and output database are named appropriately to avoid confusion.
3.0 Model Execution and Output Processing

Individual MOVES runs can be executed through the model's graphical use interface (GUI), and multiple runs can be submitted in series through the use of batch files. The execution of MOVES runs can be accomplished using a single computer, or if a user so desires, multiple machines working in tandem. The outputs from such model runs can be analyzed via the GUI, or via external MySQL tools included with the installation of the model. The follow section discusses model execution and output processing in additional detail.

3.1 Model Execution

After selections have been made for model options in MOVES, and a county input database has been created (through either the County Data Manager or the external XML importer script process described above), MOVES can be executed for a county scale analysis. For an individual run, this is done simply by clicking on the Execute command under the Action dropdown menu in the main MOVES interface.

In this case, ERG had 32 different runs to execute. We found that using the Multiple Runspec Creator, available under the Tools dropdown menu and pictured in Figure 3-1, was very helpful in generating batch files to allow for execution of multiple model runs, in sequence, outside of the MOVES interface.

MOVES - P:\DOT_MOVES\MOVES\dot_harris06_hpmsvm	t.run - ID 4479336998631792964	
<u>File Edit Pre Processing Action Post Processing Tools</u>	<u>S</u> ettings <u>H</u> elp	
Description	Multiple RunSpec Creator	
Scale	This tool creates new RunSpec files using the currently loaded in template, making substitions for county, year, and database sele user sumplied control file. In addition, a RAT file is generated that	nformation as a actions driven by a tillustrates how to
Time Spans	automatically execute each created RunSpec from the command	l line.
Geographic Bounds	Use the "Create Template" button to get started with a a control counties and years in the current RunSpec.	file that uses all the
+ Vehicles/Equipment	The final BAT file, located in your output directory, can be run as i manually for distribution onto multiple MOVES master machines	s, or can be edited
🗸 Road Type	RunSpec Template Control File:	Create Template
Venilutants And Processes		Browse
Manage Input Data Sets	File Name Prefix: RunSpec Output Directory:	
🛨 🧹 Strategies	Managana	Browse
🕂 🇹 Output	messages.	<u> </u>
Advanced Performance Features		
		_
	Create RunSpecs	Done
	T	
Create multiple RunSpecs from a template control file		1

Figure 3-1. Multiple RunSpec Creator

ERG edited the batch file produced by the tool to include all of the different runspecs already prepared, following the guidance presented in section 2.3.6.1 of the MOVES User's Guide. We found it necessary to specify a memory heap size in the batch for execution of the model; without it, MOVES ran out of memory during execution. This may or may not be necessary, depending on the configuration of the computer on which MOVES is executed. A sample batch file used for executing our TDM-based MOVES, which includes the specific memory heap syntax execution used for our runs, is shown in Figure 3-2.

@echo off rem Script generated by the MOVES Multiple RunSpec Creator rem Based on control file: P:\DOT_MOVES\MOVES\test_template.txt rem --echo Changing to the MOVES folder and compiling code... Ccd "C:\Program Files\MOVES20091221" call setenv.bat call ant compile rem ----echo ******* Running Harris County 2006 TTI VMT Basis ******* java -Xmx300m gov.epa.otag.moves.master.commandline.MOVESCommandLine -r "P:\DOT_MOVES\MOVES\dot harris06_ttivmt.run" echo ******* Running Brazoria County 2006 TTI VMT Basis ******* java -Xmx300m gov.epa.otaq.moves.master.commandline.MOVESCommandLine -r "P:\DOT_MOVES\MOVES\dot_brazoria06_ttivmt.run" echo ******* Running Chambers County 2006 TTI VMT Basis ******* java -Xmx300m gov.epa.otaq.moves.master.commandline.MOVESCommandLine -r "P:\DOT_MOVES\MOVES\dot_chambers06_ttivmt.run" echo ******* Running Fort Bend County 2006 TTI VMT Basis ******* java -Xmx300m gov.epa.otaq.moves.master.commandline.MOVESCommandLine -r "P:\DOT_MOVES\MOVES\dot_fortbend06_ttivmt.run" echo ****** Running Galveston County 2006 TTI VMT Basis ******* java -Xmx300m gov.epa.otaq.moves.master.commandline.MOVESCommandLine -r "P:\DOT_MOVES\MOVES\dot_galveston06_ttivmt.run" echo ******* Running Liberty County 2006 TTI VMT Basis ******* java -Xmx300m gov.epa.otaq.moves.master.commandline.MOVESCommandLine -r "P:\DOT_MOVES\MOVES\dot_liberty06_ttivmt.run" echo ******* Running Montgomery County 2006 TTI VMT Basis ******* java -Xmx300m gov.epa.otaq.moves.master.commandline.MOVESCommandLine -r "P:\DOT_MOVES\MOVES\dot_montgomery06_ttivmt.run" echo ******* Running Waller County 2006 TTI VMT Basis ******* java -Xmx300m gov.epa.otaq.moves.master.commandline.MOVESCommandLine -r "P:\DOT_MOVES\MOVES\dot_waller06_ttivmt.run"

Figure 3-2. Sample Batch File for Execution of Multiple MOVES Runs

We found that modeling each individual county took about 30-35 minutes to execute on our servers, using a single MOVES worker setup. Of course, modeling times will vary based on available computing resources, whether multiple MOVES workers were used (see below), the number and type of pollutants and emissions processes modeled, and other factors. In particular, we have found in other MOVES studies that modeling of evaporative hydrocarbon emissions (as opposed to modeling only exhaust emissions) can increase model execution times by an order of magnitude or more. Model setup time was initially on the order of several hours for many of the County Data Manager inputs described in the previous section, although with repeated model iterations the preparation time for the inputs was significantly decreased.

One way to improve model execution times is to take advantage of MOVES master/worker functionality, which allows users to execute their MOVES runs across multiple computers. When used in this way, the Master computer running MOVES creates calculation "bundles" for other computers to process in a shared network directory. The Worker computers use their local MOVES installation to process the bundle. Multiple Worker computers can process MOVES bundles in parallel, thus reducing the time required for model calculations. Users wishing to enable this functionality must have multiple machines available with MOVES installed, be willing to make some changes to the Windows operating system on machines running MOVES, and make appropriate edits to some MOVES configuration files. Model execution times can be greatly decreased by implementing a master/worker MOVES run setup, but the users should be aware of both the benefits and drawbacks when using MOVES in this way.

To execute MOVES across multiple computers, it is first necessary to enable File and Printer Sharing For Microsoft Networks within the operating system of the computer to be used. When this feature is enabled, users can then select a directory located on the machine of the Master computer, and enable file sharing for that directory with read/write access. This will allow other Worker computers to see and process the calculation bundles prepared by the Master. Next, configuration files should be edited on both the Master computer (MOVESconfiguration.txt), as well as any Worker computers (Workerconfiguration.txt), to reflect the location of the Shared Work Folder. In both files, the sharedDistributedFolderPath should be set appropriately. For the Master, this will refer to a local folder, while for the Worker, it will refer to a network shared folder (\\MOVESMASTER in the example below). An example of the MOVESconfiguration.txt and Workerconfiguration.txt files, with the sharedDistributedFolderPath highlighted, is presented in Figure 3-3. Having configured MOVES in this way, a model run on the Master computer can either be executed from either the GUI or the command line. Once the Master has been executed, the Worker program can be executed on other machines, which will begin processing "bundles" automatically as they become available.

Figure 3-3. Sample MOVES Configuration Files

Master Configuration

defaultServerName = localhost defaultDatabaseName = MOVESDB20091221 outputServerName = localhost outputDatabaseName = MOVESOutput **sharedDistributedFolderPath = C:\Program Files\MOVES20091221\SharedWork** GREETWTPApplication = C:\Program Files\MOVES20091221\GREET\GREETGUI.exe GREETManufactureApplication = C:\Program Files\MOVES20091221\GREET\GREET\GREETMfgStub.exe GREETDirectory = C:\Program Files\MOVES20091221\GREET computerIDPath =

Worker Configuration

sharedDistributedFolderPath = \\MOVESMASTER\SharedWork
workFolderPath = C:\Program Files\MOVES20091221\WorkerFolder
workerDatabaseName = MOVESWorker

Users should be aware that while a master/worker MOVES setup can be very beneficial in terms of model run time, the system does have some limitations. First of all, only one Worker program can be executed on a single computer at any one time. Per the MOVES User's Guide, "It would be detrimental to performance to operate more than one copy of the MOVES Worker program on a single computer." Secondly, the system does not seems to be fault tolerant – that is, if one of the workers involved in a run fails to process a bundle for some reason (which can occur under a number of conditions: for example, system runs out of disk space, power failure, network disruption) the MOVES run will not complete. In this case, the run will need to be executed again. So long as model runs are closely monitored during execution, however, this drawback can be managed. On the whole, we believe that given appropriate computing resources, most users will benefit from executing MOVES runs across multiple computers using the configuration described here.

3.2 MOVES Output Processing

In reviewing outputs from MOVES, our interest was in comparing modeled CO, NOx, and VOC emissions to those developed by TTI using MOBILE6 in their inventory²², as well as comparing emissions produced using the default MOVES drive cycles to the cycles developed using the Kansas City data described in Section 4. To produce outputs from the model, the user can either generate summary reports using the MOVES GUI, or evaluate model outputs directly using MySQL. Both approaches are discussed in additional detail below.

MOVES GUI Summary Reports

As mentioned, users can select the Produce Summary Report option, available under the Post Processing menu in the main MOVES interface, to generate emissions summaries for each county of interest. Using this option, users can also select output by total MOVES emissions, or by individual emissions process (for example, crankcase running exhaust, evaporative fuel leaks, refueling spillage loss, etc.) as shown in Figure 3-4.

²² We originally limited our analysis to only CO, NOx, and VOC because those were the pollutants modeled in TTI's original MOBILE6 runs.

Figure 3-4. MOVES Output Emission Process Selection

Beyond the modeled emissions processes, the Summary Report input dialog, pictured in Figure 3-5, allows the user to summarize model output with a number of parameters. Of particular interest is the selection of Distance as an output, which serves as an effective check to ensure that VMT input by the users passes through the model appropriately; incorrect pass through of VMT, usually due to setting up model options incorrectly, can lead to very different calculated emissions than what the user might expect. An example of the onscreen summary output that be obtained from MOVES is presented in Figure 3-6. Summaries are easily exported for use in Microsoft Excel or other programs using the Produce Tabbed Output option. Additional information on preparation of Summary Reports is available in Section 2.3.5.2 of the MOVES User's Guide.

Figure 3-5. Summary Report Input Dialog Example

Figure 3-6. Summary Report Output Example

🕌 Scree	en Rep	port						X
Header	Во	dy De	ecode					
Year	Day	County	Source	CO	NOx	VOC	Distance	
2006	5	48201	11	9	0	2	454709	
2006	5	48201	21	463	60	45	59504628	
2006	5	48201	31	270	36	16	24012118	
2006	5	48201	32	128	24	8	11892072	
2006	5	48201	41	1	3	0	139437	
2006	5	48201	42	1	1	0	49601	
2006	5	48201	43	2	1	0	106550	
2006	5	48201	51	0	1	0	77165	
2006	5	48201	52	30	16	3	2405400	
2006	5	48201	53	2	1	0	180492	
2006	5	48201	54	2	0	0	49761	
2006	5	48201	61	18	61	3	3567112	
2006	5	48201	62	11	37	3	1679379	
<u> </u>								
Print a	nd Clo	se Repo	rt					
Close	Repor	t						

Processing Model Output Using MySQL

Users can also process and analyze output from MOVES outside of the model's interface entirely by using the MySQL Query Browser, which is included with a typical MOVES installation. This requires some familiarity with MySQL query syntax, but has some advantages relative to processing model output via the MOVES GUI.

To create emissions output like the examples below, users can first select the Run MySQL Script on Output Database option (located under the Post Processing menu within the MOVES interface) and choose to execute the DecodeMOVESOutput.sql script23. This script creates additional decoded MOVES emissions and activity tables in the selected output database. Users can then write custom queries and create detailed summaries of their own using the newly decoded tables in the MySQL Query Browser. We have provided two sample queries in Figures 3-7 and 3-8 that recreate the model outputs presented in Figure 3-6. The first script calculates emissions for Harris County for each source type, while the second returns both VMT and vehicle population used in the model calculations. Users are of course free to aggregrate emissions and activity as they choose by using the GROUP BY function on the wide variety of variables available in the output tables, using MySQL scripts that they create.

²³ This script can also be executed outside of the MOVES GUI, if desired. In point of fact, running this script is not absolutely necessary at all if a user wishes to perform calculations on the unmodified *movesoutput* and *movesactivityoutput* tables

Figure 3-7. Sample Query and Output using MySQL Query Browser - Emissions

🐔 MySQL Query Browser - root@localhost:3306 / dot_harris06_hpmsvmt_out									
File Edit View Query Script Tools Window Help									
Image: Select yearID, dayname, countyName, sourcetypeID, sourcetypeName, pollutantname, sum(emissionQuant) Image: Select yearID, dayname, countyName, sourcetypeID, sourcetypeName, pollutantname, sum(emissionQuant) Image: Select yearID, dayname, countyName, sourcetypeID, sourcetypeName, pollutantname, sum(emissionQuant) Image: Select yearID, dayname, countyName, sourcetypeID, sourcetypeName, pollutantname Image: Select yearID, dayname, countyName, sourcetypeID, sourcetypeName, pollutantname Image: Select yearID, dayname, countyName, sourcetypeID, sourcetypeID;									
📑 🛛 B	esultset 1	× Ø Results	set 5					Schemata Bookmarks History	
	yearID	dayname	countyName	sourcetypeID	sourcetypeName	pollutantname	sum(emissionQ	2	
Þ	2006	Weekdays	Harris County	11	Motorcycle	Carbon Monoxide (CO)	9.2312196020 🔺	► 🔁 dat galveston06 trivert out cucl	
	2006	Weekdays	Harris County	21	Passenger Car	Carbon Monoxide (CO)	462.83130248	dot_gaivesionoo_arvini_out_cycl	
	2006	Weekdays	Harris County	31	Passenger Truck	Carbon Monoxide (CO)	270.39336551	▼ 😫 dot harris06 hpmsymt out 💻	
	2006	Weekdays	Harris County	32	Light Commercial Truck	Carbon Monoxide (CO)	127.61596395	activitytype	
	2006	Weekdays	Harris County	41	Intercity Bus	Carbon Monoxide (CO)	0.8414924031	decodedmovesactivityoutput	
	2006	Weekdays	Harris County	42	Transit Bus	Carbon Monoxide (CO)	0.5944779577	decodedmovesoutput	
	2006	Weekdays	Harris County	43	School Bus	Carbon Monoxide (CO)	1.6890290737	movesactivityoutput	
	2006	Weekdays	Harris County	51	Refuse Truck	Carbon Monoxide (CO)	0.4795047200	moveserror	
	2006	Weekdays	Harris County	52	Single Unit Short-haul Truck	Carbon Monoxide (CO)	29.732667493		
	2006	Weekdays	Harris County	53	Single Unit Long-haul Truck	Carbon Monoxide (CO)	2.1392899077		
	2006	Weekdays	Harris County	54	Motor Home	Carbon Monoxide (CO)	1.6050697109	Syntax Functions Params ITX	
	2006	Weekdays	Harris County	61	Combination Short-haul Truck	Carbon Monoxide (CO)	17.507697684	Data Manipulation	
	2006	Weekdays	Harris County	62	Combination Long-haul Truck	Carbon Monoxide (CO)	11.459945854	Data Definition MySOL Utility	
	2006	Weekdays	Harris County	11	Motorcycle	Oxides of Nitrogen	0.3539979890	Transactional and Locking	
	2006	Weekdays	Harris County	21	Passenger Car	Oxides of Nitrogen	60.246362355		
	2006	Weekdays	Harris County	31	Passenger Truck	Oxides of Nitrogen	35.514402396		
	2006	Weekdays	Harris County	32	Light Commercial Truck	Oxides of Nitrogen	23.564148619		
	2006	Weekdays	Harris County	41	Intercity Bus	Oxides of Nitrogen	2.8291779798		
	2006	Weekdays	Harris County	42	Transit Bus	Oxides of Nitrogen	0.7315712620 👽		
39 rows fetch	ed in 0.0078s	(0.0579s)			🥒 Edit 🛛 🗸 Apply	Changes 🗙 Discard Changes 📕 First	🕨 Last 👂 Search		
1: 1								.:	

MySQL Query Browser - root@localhost:3306 / dot_harris06_hpmsvmt_out										
File Edit	File Edit View Query Script Tools Window Help									
Go back	Image: Select yearID, dayname, countyName, sourcetypeID, sourcetypeName, activityType, sum(activity) as Acti Image: Go back Next Next Next Next Next Next Next Next									
<u> </u>	Resultset 1	Ø Resu	ltset 5 ×					Schemata Bookmarks History		
	yearID	dayname	countyName	sourcetypeID	sourcetypeName	activityType	Activity	2		
•	2006	NULL	Harris County	11	Motorcycle	population	71144	▶ 🤤 dot galvestop06 ttivmt out cucl 🔨		
	2006	NULL	Harris County	21	Passenger Car	population	2078300	dot_ganessence_mm_sat_organ		
	2006	NULL	Harris County	31	Passenger Truck	population	321473	▼ 🗧 dot harris06 hpmsymt out		
	2006	NULL	Harris County	32	Light Commercial Truck	population	158307	▶ activitytype		
	2006	NULL	Harris County	41	Intercity Bus	population	513.97998046875	decodedmovesactivityoutput		
	2006	NULL	Harris County	42	Transit Bus	population	315.019989013672	decodedmovesoutput		
	2006	NULL	Harris County	43	School Bus	population	2366	movesactivityoutput		
	2006	NULL	Harris County	51	Refuse Truck	population	129.919998168945	moveserror		
	2006	NULL	Harris County	52	Single Unit Short-haul Truck	population	7581.2998046875	▶ 🛄 moveseventlog		
	2006	NULL	Harris County	53	Single Unit Long-haul Truck	population	624	movesoutput		
	2006	NULL	Harris County	54	Motor Home	population	691.599975585938	• movesrun		
	2006	NULL	Harris County	61	Combination Short-haul Truck	population	1631.42004394531	movestablesused		
	2006	NULL	Harris County	62	Combination Long-haul Truck	population	778.760009765625	movesworkersused		
	2006	Weekdays	Harris County	11	Motorcycle	distance	454709.359716415			
	2006	Weekdays	Harris County	21	Passenger Car	distance	59504628.8962402	rateperprofile		
	2006	Weekdays	Harris County	31	Passenger Truck	distance	24012118.2053223	<		
	2006	Weekdays	Harris County	32	Light Commercial Truck	distance	11892072.0604858			
	2006	Weekdays	Harris County	41	Intercity Bus	distance	139436.720310211	Syntax Functions Params Trx		
	2006	Weekdays	Harris County	42	Transit Bus	distance	49600.8582727909	🛅 Data Manipulation		
	2006	Weekdays	Harris County	43	School Bus	distance	106550.08886385	🛅 Data Definition		
	2006	Weekdays	Harris County	51	Refuse Truck	distance	77164.9649312496	MySQL Utility Trappartianal and Locking		
	2006	Weekdays	Harris County	52	Single Unit Short-haul Truck	distance	2405399.95361328	iransactional and Locking		
	2006	Weekdays	Harris County	53	Single Unit Long-haul Truck	distance	180491.765787125			
	2006	Weekdays	Harris County	54	Motor Home	distance	49760.781516552			
	2006	Weekdays	Harris County	61	Combination Short-haul Truck	distance	3567111.81680298			
	2006	Weekdays	Harris County	62	Combination Long-haul Truck	distance	1679379.2587204			
26 rows fe	tched in 0.0072s	; (0.0044s)			🖋 Edit 🗸 Apply Changes 🕽	Discard Changes	🛛 First 🕨 Last 🔑 Search			
1: 1										

Figure 3-8. Sample Query and Output using MySQL Query Browser - Activity

Although producing query outputs such as those shown above requires some knowledge of MySQL query syntax, there are several advantages to analyzing the outputs of the MOVES model in this way. First of all, the flexibility inherent in MySQL allows for users to investigate output from the model in a more robust way, when compared to the limited options available in the MOVES GUI Summary Reports. Appendix H of the MOVES User's Guide presents a series of script examples that deal with post processing of MOVES outputs in the MySQL environment. Secondly, analysis of model outputs using the GUI cannot be performed when a MOVES model run is in progress; use of MySQL allows users to examine model outputs while concurrently executing other modeling. Finally, depending on the units selected in the model output options, the Summary Reports available in GUI may not provide enough resolution for proper analysis of data, since these reports present data in whole numbers only. The output available by processing MySQL queries, on the other hand, contains a large number of significant figures.

Figure 3-9 presents a list of things to keep in mind while preparing to execute MOVES runs, and process associated model outputs.

Figure 3-9. MOVES Execution and Output Processing Quick Reference

Model Execution

- The MOVES multiple runspec generator can be used to generate batch files to allow for execution of multiple model runs
- Be aware that modeling of evaporative hydrocarbon emissions can increase model execution times significantly, when compared to modeling exhaust emissions only.
- Use of a master/worker MOVES setup, using multiple worker computers, can effectively reduce model run time. However, understand that the failure of any one worker to complete its processing will prohibit the entire run from finishing cleanly.
- Be sure that you don't execute more than one worker program on a given machine, as this is detrimental to model run time.

Model Output Processing

- Processing outputs using the MOVES GUI is quick and effective, but has limited options for aggregation and disaggregation of data.
- Output summaries cannot be produced by the MOVES GUI while another run is in progress; use of the MySQL Query Browser allows for analysis of emissions data from one model run while execution of another run is ongoing.
- Analysis of output in the MOVES GUI can be limited by the selection of units made in model options. The GUI presents output in whole numbers only, while output viewed via MySQL provides many more significant figures.
- If a user is familiar with SQL syntax and query construction, he can investigate outputs from the model in a more robust manner.
- If a user has generated outputs from multiple MOVES runs in a single database, he must be careful to appropriately segregate his output data in MySQL by selecting the appropriate MOVESRunID. Otherwise, he will combine emissions estimates from multiple runs. This same type of error can occur when aggregating across time periods as well (for example, summing emissions over both weekends and weekdays when only output from weekdays is desired). Such an error is much less likely to occur when using the MOVES GUI to summarize outputs.

4.0 Drive Cycle Development

One of the tasks undertaken during this project involved development of drive cycles (also known as drive schedules) based on the Kansas City Emissions Study previously performed by ERG for EPA. MOVES uses real world driving cycle data and the measured emissions from associated drive cycles to model a wide range of possible driving patterns and their resultant emissions. Specifically, MOVES uses the second-by-second speed data included in its drive cycles to calculate the second-by-second vehicle specific power (VSP). It then uses this VSP, along with vehicle type and vehicle age, to weight emission rates before they are applied to the activity data to generate emissions estimates. The resulting estimates are thus based on real world driving.

Drive cycles in MOVES are classified by average speed, vehicle type, and roadway type. In this section, we discuss the methodology we used to develop our own drive cycles based on the collected Kansas City data, and the ways in which we adapted them for inclusion in the MOVES model itself. Having derived alternate drive cycles, we created MOVES modeling runs using those drive cycles for comparison to the modeling runs described in Section 2 above.

In the Kansas City Emissions Study, a large number of light-duty vehicles were equipped with data loggers. The data loggers were in operation while the vehicles were driven on a prescribed "conditioning" run (in which vehicles were driven on a set route in order to prepare them for dynamometer testing at the Kansas City site) and also while the vehicle owners operated the vehicles under regular driving conditions. The data loggers collected and stored second-by-second vehicle operating information, including speed, RPM data, mass air flow, and other data, as well as the time, and the latitude and longitude of the location of each second of driving.

The data stored by the data loggers was used to develop drive cycles that are representative of actual driving in Kansas City. The latitude and longitude coordinates of each second of driving were used to designate each second of driving as having taken place in a rural or an urban area, as well as the type of roadway (freeway, ramp, local road, etc). All of the driving data was then divided into "micro-trips", where each micro-trip is the driving that begins either at vehicle-on or after an idle period, and ends either at vehicle-off or when the vehicle returns to idle. The micro-trips were divided into bins according to road type and average speed, and then for each road type/speed bin, a vector comparison process was used to select a small number of micro-trips that best represented the overall pool of micro-trips for that bin. These selected micro-trips became the driving cycle for each road type/speed combination.

Generally speaking, the development of fleet-specific driving cycles is a resourceintensive process. There are several steps, which include:

- 1) Gathering in-use driving data for the fleet of interest. This typically includes outfitting selected vehicles from the fleet with data-loggers that collect and store, at a minimum, second-by-second vehicle speed. Additionally, storage of information such as engine RPM, mass air flow, and other operational data can be useful in the process of interpreting the driving history for the vehicle. Also, if drive cycles are to be developed for different road types, then the location of the vehicle at each second of driving must be collected and stored. The data that is collected must include enough vehicles, over enough time, to develop a large pool of second-by-second trip information that can be used to represent the general driving characteristics of the fleet. If a small number of vehicles or a shortduration study is used, there is the risk of developing a drive cycle that does not represent the general fleet. This step requires qualified field personnel to install the data loggers (this is critical: improperly installed data loggers result in low quality output data), the data loggers themselves, and a pool of vehicles and drivers. The second-by-second driving should ideally include several million seconds of usable driving.
- 2) Interpretation and QA/QC of the driving data. Once the second-by-second data is collected, it needs to be checked for accuracy and consistency. Among other issues, data loggers can fail intermittently, speeds can get stuck, and random noise sometimes enters the signal. Every data logger and dataset will have its own issues, which need to be discovered and dealt with before the data can be relied upon for the development of drive cycles. This typically involves the manual examination of plots of second-by-second driving data, in addition to analysis of statistics for each trip (for example, mean speed, number of seconds at idle, maximum and minimum acceleration, etc.). This process can be very time consuming, but should be done by an analyst with a good understanding of vehicle operating characteristics, and with skill in extracting pertinent information from a large and variable dataset.
- 3) **Conversion of the driving data into a pool of micro-trips**. This step prepares the driving data for use in selecting individual micro-trips as components of a drive cycle. It requires software that is capable of matrix manipulation (such as SAS, Matlab, or similar), a system that can store and manipulate datasets on the order of one or more gigabytes, and an analyst with an understanding of matrices as well as vehicle driving characteristics.
- 4) Selection of the micro-trips that will comprise the desired driving cycle(s). This involves comparing each individual micro-trip with the pool of all micro-trips and choosing the micro-trips that best represent the overall pool. Similar to step 3, this step requires software that can work with matrices, a system that can handle the dataset size, and an analyst with an understanding of matrices.

5) **Post-processing of the selected driving cycle(s).** This includes checking statistics for the final cycle, looking at plots of second-by-second speed and acceleration to check for anomalous data, and, depending on the data logger used, possibly smoothing out noise from the stored driving data.

Because of the level of effort required, we expect that many users will elect not to pursue development of vehicle drive cycles specific to their area, and instead choose to use the default drive cycles provided in the MOVES model. Nonetheless, we have documented the methodology used for this study in the hopes that it may be of use to others in the future who wish to undertake similar work. The remainder of the text in this section describes procedures undertaken specifically to convert the collected Kansas City activity data into drive cycles capable of being input into MOVES.

4.1 Preparation of Raw Data

Second-by-second driving data for light duty passenger vehicles was used for this study. The data was collected in Kansas City between July 2004 and April 2005. On-vehicle data loggers recorded the second-by-second driving data, while a GPS unit recorded the latitude and longitude coordinates of the vehicle for each second. A total of 4.6 million seconds of driving data were collected and available for use in this study. The driving data includes a number of repeated trips on a specific vehicle conditioning route, as well as normal, everyday driving by the vehicle owner.

The first step in processing the driving data was to use the latitude/longitude information to determine the location of the vehicle, and therefore the type of road being driven on, for each second of driving. The next step was to identify and attempt to correct any issues with the data that would reduce its quality for use in building drive cycles. These steps are described below.

Assignment of Road Types

A Geographic Information System (GIS) was used to assign road types to the trip data points. Second-by second data points had latitude and longitude coordinates which were mapped in batches with the World Geodetic System 1984 (WGS 84). An initial quality check was done to remove obviously erroneous data, such as (0,0) points, and trips that showed no relation to the area's road network.

Urban/rural designations were obtained by mapping each data point as either within or outside of an urban area from the U.S. Census Bureau's 2000 Urbanized Areas (UAs)

shapefile.²⁴ The U.S. Census Bureau delineates UAs to provide a better separation of urban and rural territory, population, and housing in the vicinity of large places.

Road type classification was based on ESRI's 2008 U.S. and Canada Detailed Streets layer, which came from the 2003 Tele Atlas Dynamap Transportation version 5.2 product. This detailed road network includes 10 unique road classes indicating various roadway types such as highways, local roads, and so forth. Every road segment in the data set is categorized into one of these 10 road classes (shown in Table 4-1). Spatial analysis tools in the GIS were used to identify the road segment nearest each data point and assign the segment's road class to the point.

Road Class	Road Class Definition
1	Limited Access
2	Highway
3	Major Road
4	Local Road
5	Minor Road
6	Other Road
7	Ramp
8	Ferry
9	Pedestrian Way
0	A special class for high- level routing cross-country
	and in complicated urban areas.
*00	Off-grid, parking lot, etc.

Table 4-1. Road classification codes and definitions

However, additional revisions were required to address two primary limitations of this automated process. First, data points located close to a cross street were sometimes classified by the software as having the cross street's road class when the trip as a whole clearly continued on the primary road. These points were identified and manually assigned the correct primary road class. Second, this approach ensured that all data points were assigned a road class, even if the trip did not follow road segments. Points that did not closely follow the road network were identified and assigned a separate "00" class indicating points or trip portions that were off-grid such as points off of roads, within parking lots, or with erroneous coordinates. Figure 4-1 presents an example plot of second-by-second observations, along with classifications of nearby roadway types.

²⁴ http://www.census.gov/geo/www/cob/ua_metadata.html

Figure 4-1. Sample Assignment of Road Types and Data Points

The road class definitions listed in Table 4-1 were next condensed to correlate to the five road types used by MOVES. This mapping was consistent with the correlation presented in Table 4-2.

		Area
MOVES Road Type	Road Class	Classification
1 Off Naturely	00 - Off Grid	All
I - OII-Network	9 -Pedestrian Way	All
	0 - Thru Way/Cross	
	Country	Rural
2 - Rural Restricted Access	1 - Limited Access	Rural
	2 - Highway	Rural
	7 - Ramp	Rural
	3 - Major Road	Rural
3 - Rural Unrestricted	4 - Local Road	Rural
Access	5 - Minor Road	Rural
	6 - Other Road	Rural
	0 - Thru Way/Cross	
	Country	Urban
4 - Urban Restricted Access	1 - Limited Access	Urban
	2 - Highway	Urban
	7 - Ramp	Urban
	3 - Major Road	Urban
5 - Urban Unrestricted	4 - Local Road	Urban
Access	5 - Minor Road	Urban
	6 - Other Road	Urban

Table 4-2. Road Classes Mapped to MOVES Road Types

Removal of Waiting Times at Test Center

Having assigned road types to the raw driving data on a second-by-second basis, the next step in our methodology was to begin the QA/QC process for the driving data. The first issue that was discovered was that many of the vehicle conditioning trips in the dataset included various periods of idle, along with some sporadic low-speed driving in the parking lot. This occurred both prior to driving of the designated test cycle, and also after the driving for the designated test cycle was completed. These instances were identified both by their latitude and longitude, and by their designation as being part of the "off-grid" road class, and thus were removed from the dataset. Any disconnected fragments of driving that were left at the beginning or the end of the trip after the removal of the parking lot periods were also removed from the dataset. This resulted in the deletion of 475,000 seconds from the dataset. An example of the type of data that was removed is shown in Figure 4-2. The data removed is represented by the red line, while the data kept is shown by the black line.

Figure 4-2. Waiting Times at Test Center

Blocks of Time with Stuck Speeds

Under normal driving conditions, it is rare for a vehicle to travel at the exact same speed for more than a few seconds. Even while driving on the freeway, a vehicle's speed tends to vary. In the Kansas City dataset, some blocks of time were identified for certain vehicles in which vehicle speed stayed constant for extended, improbable stretches. Additionally, a few blocks of time were found where the speed decreased perfectly evenly over several minutes, by a tenth of a mile per hour ever few seconds. Visual examination of the speed versus time history around these stretches indicated that they were not representative of real driving, but rather a stuck voltage or other data logger malfunction. Thus, any blocks of driving where the speed either remained constant for more than 12 seconds, or decreased perfectly steadily, were deleted from the dataset. Ultimately 38,000 seconds were deleted for these reasons. An example of a data logger with a stuck speed is shown in Figure 4-3. The driving with the stuck speed is shown in red.

Figure 4-3. Data Logger with Stuck Speed

False Trips

In some instances, a number of very short trips were recorded that appeared to be electronic "blips", as opposed to actual driving. For these, the trip duration was very short, speed increased gradually and then decreased only once (as opposed to repeated increases and decreases in speed that are usually seen), and the peak speed was very low – always less than 20 mph, but usually much lower than that. Therefore, a total of 1,211,000 seconds comprising these false trips were deleted. An example of this type of false trip is shown in red in Figure 4-4.

Figure 4-4. False Trips in Drive-Away Driving

Engine Off Times

During the Kansas City study, the data loggers continued to record vehicle data even when the vehicle was turned off. Usually, engine RPM would be useful in the determination of whether the vehicle is at idle, or turned off; however, engine RPM was not always successfully stored by the data loggers in this study. Mass air flow (MAF) was stored, and was considered for use in differentiating between engine off and idle periods, but it was found that the MAF signal was very noisy, so that even when the vehicle engine was off, the MAF signal fluctuated above zero. Thus the vehicle's speed was the only useful variable in determining whether the vehicle was on or off. Any zero speed traces at the beginning of a trip, before any driving was done, and at the end of a trip, after all driving was done, were deleted from the dataset, which accounted for 1,306,000 seconds of data. This may have resulted in the accidental deletion of some periods where the vehicle was actually idling, rather than turned off, but this should not significantly affect the final cycles. After all of the edits discussed above were made, the remaining dataset contained records for 1,596,000 seconds of data.

Assignment of Trip and Micro-Trip Starts

The driving cycles were created as a set of "micro-trips" with speed and acceleration characteristics that best matched the speed and acceleration of driving in the entire dataset. A micro-trip is defined as a contiguous speed trace of vehicle driving, and is made up of an engine idle, followed by all non-idle driving until the next idle begins. A single vehicle trip may be composed of numerous micro-trips. Each separate trip in the raw Kansas City dataset was labeled with a unique ID by the data logger, and these trip designations were not changed. The next step in the process was to sub-divide the driving in the raw data into micro-trips before the cycles were built. We established the beginning of a new micro-trip:

- When a new trip began; or
- If the current speed was zero and the previous second's speed was non-zero.

Whenever a new micro-trip was detected, the numeric identifier for the micro-trip was incremented. Micro-trip numbers for the entire dataset were unique.

Binning of Continuous Variables

To use the cycle development approach discussed below in Section 4.2, all of the microtrips in the edited dataset needed to have all of their second-by-second observations binned in terms of speed and acceleration. While the size of the bins is arbitrary, bins in general need to be narrow enough to resolve important emissions effects. In addition, bins need to be sufficiently narrow to distinguish different micro-trips for low speed/low acceleration micro-trips where those variables do not vary over a large range. On the other hand, from a practical perspective, the number of bins needs to be small so that the program that selects micro-trips can run in a reasonable amount of time.

For the cycle development in this project, we used the following binning schemes to bin the data:

- **Speed** the continuous speed values in miles per hour were rounded to the nearest 2 miles per hour. For example, 5.6 miles per hour was assigned to bin 6, 6.9 miles per hour was assigned to bin 6, and 4.9 miles per hour was assigned to bin 4.
- Acceleration Acceleration values in miles per hour per second were rounded to the nearest one mile per hour per second.

Criteria for Skipping Micro-Trips for a Cycle

Three types of micro-trips were excluded from use in the candidate cycles. First, some micro-trips consisted of entirely idle operation. These micro-trips were not used since a dedicated idle cycle was not needed for use in the MOVES model.

Second, any micro-trips less then 20 seconds in duration were not considered for inclusion in the cycles. The reason for not including these is that many short micro-trips can be produced by common, but non-representative, operation of the vehicle. One example of such operation is when a vehicle starts moving from a standstill, but the engine dies because the clutch is let out too quickly. We have found in this study, as well as in past studies, that micro-trips longer than 20 seconds are adequate to describe the vehicle driving behavior of the entire dataset taken as a whole.

The third type of micro-trip that was excluded from consideration for the cycles was any micro-trip with only one non-zero second of driving.

Assignment of Micro-Trips to Road Type and Speed Bins

For this study, our intent was to create an array of drive cycles for driving on different road types and at different average speeds, similar to the array of cycles that make up the defaults drive cycles in MOVES. Initially, we proposed to developed four cycles: Rural Restricted, Rural Unrestricted, Urban Restricted, and Urban Unrestricted, corresponding to the four on-network road types contained in the MOVES model. However, once the dataset QA/QC process was complete, it was clear that there was far more urban data available than rural, and that there were not enough rural micro-trips to use as a pool from which to derive a driving cycle. Therefore, it was decided to divide the data among only two road types: Restricted (freeways, ramps, etc.), and Unrestricted (local roads).

Even with only two categories for the road types, it was found that the majority of microtrips included driving on both of the two road types. In large part, this issue was an artifact of using latitude/longitude coordinates to determine what road that the vehicle was on. It was common to see in the dataset stretches of driving that was almost entirely on one road, except that every few seconds, a single record was seen with a different road name. These turned out to be the intersections that the vehicle was driving through, because the coordinates for an intersection are the same for either of the cross streets. Since we needed to assign each microtrip to a single bin, the assignments were made based on the road type that was found for the majority of the seconds of the micro-trip. A typical mixed-type micro-trip is shown in Figure 45. Restricted (highway) driving is shown by the black line, while unrestricted-road (local) driving is shown in red. The figure shows that the predominant driving in the micro-trip is on the highway, with brief switches to unrestricted roads, which can only be explained by intersections crossing the highway (either over it, or under it). Data processing for work such as this will be greatly facilitated, and the accuracy of road-type assignments will be improved, when software to correlate road names with GPS coordinates is developed to look at the vehicle's trajectory in addition to its latitude and longitude.

After each micro-trip was assigned to a specific MOVES road type, we then created speed bins. Each micro-trip was assigned to one speed bin, based on the mean speed for the micro-trip. Since an extended idle period at the beginning of a micro-trip could dramatically reduce the mean speed for the micro-trip, all idle periods were separated from the non-idle portion of the dataset.

The speed bins that we initially attempted to use in the binning process were designed to match the mean speeds for the driving cycles for light duty vehicles that currently exist in MOVES. However, Table 4-3 shows that these bins did not match the distribution of the driving

data for Kansas City, in that the lower bins contain most of the micro-trips, while the higherspeed bins are under populated. Therefore, a second set of speed bins was developed, with the intent of dividing the bins such that each would contain approximately the same amount of data. The second set of speed bins is listed in Table 4-4, and these were the speed bins that were ultimately used. One drive cycle was developed for each of the twelve road type/mean speed bin combinations in Table 4-4. Comparison of the two tables shows that the Kansas City drive cycles will consist of generally lower average speeds than the MOVES drive cycles currently do. It is possible that this discrepancy can be attributed to the use of latitude/longitude to determine an appropriate road type. That is, some of the micro-trips with lower mean speeds that are labeled as Restricted do not have the cruising speed characteristics and long duration that are typically expected of freeway driving, and some of these micro-trips might actually be misclassified Unrestricted-road driving. (In previous analyses, prior to the availability of GPS coordinates associated with driving activity, micro-trips were assigned as restricted/unrestricted based only the mean speed of the trip.)

The idle data that was separated from the non-idle driving data was then evaluated to determine the average idle length for micro-trips from each of the road type/speed bin combinations. It was found that the idle length was close to 20 seconds for all of the road type/speed bin combinations. That amount of idle time was added back to each micro-trip for the drive cycle.

			Total Seconds of
Road Type	Speed Range (mph)	Number of MicroTrips	Driving
Restricted	00.0-22.5	933	51,516
Restricted	22.5-37.5	1868	217,178
Restricted	37.5-50.0	481	142,060
Restricted	50.0-60.0	258	222,670
Restricted	60.0-70.0	33	32,284
Restricted	70 +	1	109
Unrestricted	00.0-15.0	917	40,154
Unrestricted	15.0-25.0	2136	262,541
Unrestricted	25.0-35.0	1308	343,568
Unrestricted	35.0-47.5	164	42,206
Unrestricted	47.5-60.0	18	12,656

 Table 4-3. First Pass Speed Bins, Based on Default MOVES

 Drive Cycle Speed Ranges

			Total Seconds of
Road Type	Speed Range (mph)	Number of MicroTrips	Driving
Restricted	00-20	543	30,222
Restricted	20-30	1610	123,354
Restricted	30-40	857	160,872
Restricted	40-50	272	96,306
Restricted	50-60	258	222,670
Restricted	60+	34	32,393
Unrestricted	00-15	917	40,154
Unrestricted	15-20	815	88,395
Unrestricted	20-25	1321	174,146
Unrestricted	25-28	600	165,059
Unrestricted	28-32	555	145,134
Unrestricted	32+	335	88,237

Table 4-4. Final Speed Bins, Based on Uniform Distribution of Trips AcrossSpeed Ranges

4.2 Drive Cycle Development

Representative drive cycles can be built from raw driving data using different methodologies. The methodology we have chosen for this study's cycle is to use pieces of real driving, called micro-trips, derived from available second-by-second driving data, and processed using a series of SAS programs developed by ERG.²⁵ When these micro-trips are connected together, they can be expected to represent driving behavior from the area of interest. The drive cycles we built were based on parameters of vehicle operation and usage that are known to be closely related to exhaust emissions. By using this approach of matching vehicle operation between measured driving behavior and the candidate cycle, it can be inferred that the emissions behavior of vehicles over the cycle will be similar to the emissions behavior of vehicles on the road.

In the creation of these driving cycles, we have chosen vehicle speed and acceleration as the variables that are important to exhaust emissions. These variables together provide a measure of the load on the engine, which is an important variable associated with exhaust emissions. In this study, we are building a cycle only for warmed up operation of light duty vehicles. That is, we are not building special cycles for cold starts and warm starts²⁶. We assume that all data in the datasets represent warmed-up driving.

²⁵ The methodology used in this study was previously developed in ERG's *Roadway-Specific Driving Schedules for Heavy-Duty Vehicles*, prepared for EPA in August 2003.

²⁶ Drive cycles were only developed for warmed up operations because MOVES exhaust emissions are based on warmed up operations. Emissions associated with vehicle starts are calculated in MOVES using a methodology that is not connected with drive cycles.

General Methodology

A strategy based on minimizing the difference between a cycle vector C representing the driving in the candidate cycle and a target vector T representing the driving in the activity database for the case was used to select micro-trips from the database for inclusion in the cycle. As micro-trips are used to build-up a candidate cycle, the difference between the two vectors tends to become smaller and smaller. The build-up process ends when the cycle developer decides that the two vectors are substantially the same and the duration of the cycle that has been built up is acceptable. The multi-dimensional space that these vectors are in will be described shortly, but first let us consider how the build-up process works for developing a cycle.

The goal of building the cycle is to select micro-trips such that when their vectors M_1 are added together, the vector C of the resulting cycle is as similar as possible to the target vector T of the activity database. Figure 4-6 shows the hypothetical situation of the vectors after two micro-trips have been used to create a cycle. In this hypothetical example, the first micro-trip was selected from the activity database for the case as the one whose vector M1 was closest to the target vector T for the database. Then, a second micro-trip is searched for such that when its vector M_2 is added to M_1 to create the resultant vector C shown in Figure 3-1, the distance between the tips of C and T is minimized. This distance is the length of the vector T-C as denoted in the figure by the dashed vector. As micro-trips are added to create the built-up cycle represented by C, the length of T-C is calculated after each additional micro-trip is added to the cycle to follow the progress of the build-up process. It should be noted that the order of the micro-trips in the final cycle is unimportant from the point of view of the selection of the microtrips. The reason for this is that the resultant C is independent of the order in which the microtrip vectors M_i are added together.

It should also be noted that we are forcing micro-trips to be added to the candidate cycle. This is done even if the addition of the best incremental micro-trip causes the length of **T-C** to increase in some instances. Generally, as the cycle is built up there will be a decrease in the length of **T-C**. After several micro-trips have been added, the length of **T-C** may increase slightly. Later, with the addition of more micro-trips, a "discovery" will be made that will produce a relatively abrupt decrease in the length of **T-C** so that the accumulated cycle will be substantially better than the cycle was much earlier in the build-up process.

All of the vectors used above to describe the build-up process are based on representations of the frequency distributions of observations in cumulative speed, acceleration, vehicle specific power space. This statement requires some explanation. A segment of driving, whether it is a micro-trip, a piece of a driving cycle, or the entire activity database, can be described as a frequency distribution. The distribution consists of combinations of two variables: speed and acceleration. The continuous values for these variables were converted into frequency distributions through the use of bins. Each observation in the database was placed in a particular speed/acceleration bin. The <u>cumulative</u> frequency distribution is made up of the number of observations that fall "below" the current bin for each of the two-binned variables. The binning criteria for the two variables is described above in Section 4.1. To help the reader understand the

process, we will present a numerical example in one dimension and another example in two dimensions to demonstrate how the comparison of the vectors \mathbf{T} and \mathbf{C} works.

Suppose we wanted to compare a candidate cycle with the database using a single vehicle operation variable that was monitored second-by-second in the collection of data for the activity database. The single variable might be engine load. In this hypothetical example, we have 35,900 one-second observations of engine load in the target activity database and 68 one-second observations in the cycle. The first step in comparing **T** and **C** is to bin the observations of load in the target data and in the cycle data. Table 4-5 shows the binning of the hypothetical data in Columns 2 and 3. Note that the target counts in Column 2 are much larger than the cycle counts in Column 3. This is a consequence of the activity database containing all of the observations for all micro-trips, while the cycle has just one micro-trip. The counts in Columns 2 and 3 were converted to cumulative counts in Columns 4 and 5. This is done to provide proximity information for the micro-trip even if the observations for a given micro-trip were not in exactly the same bins as the target, but did have observations at least in a nearby bin. The use of the cumulative distributions helps ensure that proximity information is available.

					Vector						
	Cou	nts	Cumulativ	e Counts	(Normalized Cu	(Normalized Cumulative Counts)			Vector Length		
Bin	Target	Cycle	Target	Cycle	Target	Cycle	Т	С	T-C		
1	1000	0	1000	0	0.028	0.000	1.246	1.266	0.138		
2	11000	30	12000	30	0.334	0.441					
3	7000	10	19000	40	0.529	0.588					
4	6000	7	25000	47	0.696	0.691					
5	4500	5	29500	52	0.822	0.765					
6	2800	1	32300	53	0.900	0.779					
7	1500	4	33800	57	0.942	0.838					
8	800	6	34600	63	0.964 0.926						
9	600	1	35200	64	0.981 0.941						
10	700	4	35900	68	1.000	1.000					

 Table 4-5.
 Comparison of Cycle and Target Vectors

 for a Hypothetical One-Dimensional Example

A comparison of the cumulative counts for the target and cycle information in Columns 4 and 5 shows that if we used these counts to create the **T** and **C** vectors, the lengths of the vectors would be greatly different simply because the target vector, which is made up of the 10 elements in Column 4, would be a much longer vector then the cycle vector, which is made up of the 10 elements in Column 5. Accordingly, we normalize the target and cycle cumulative counts in 4

and 5 to produce the target vector elements and the cycle vector elements as the fractional values between 0 and 1 shown in Columns 6 and 7.

The values in Columns 6 and 7 become the elements of the **T** and **C** vectors, which are in 10-dimensional space. A visualization of the elements of these vectors is provided in Figure 4-7. This figure shows the normalized cumulative counts of the target and cycle from Columns 6 and 7 as a function of the bin number. What we want to do in developing the cycle is select microtrips so that the curve for the cycle is as close as possible to the curve for the target in this figure. The way we do this is to minimize the sums of the squares of the differences between the value for the corresponding elements of the target and cycle vectors. This corresponds to the square of the length of **T**-C. Table 3-1 shows the calculated length of **T**, **C**, and **T**-C. These lengths can be determined from the values of the elements for **T** and **C** in Columns 6 and 7 using the standard relationship for determining the length of a vector if its elements are known.

Figure 4-7. Visual Comparison of Vector Elements

Extension of the one-dimensional example shown in Table 4-5 and Figure 4-7 to multiple dimensions is demonstrated by the spreadsheet calculations shown in Table 4-6. In this example, 100 matrix elements are used. The table shows 10 rows which might be accelerations and 10 columns which might be speeds. The left side of Table 3-2 shows the calculations for the target

matrix and the right side shows the calculations for the cycle matrix. In Tables a) and b), the second-by-second observations of the target and cycle data are binned. The numbers in each bin represent the frequency of observations that meet the criteria for those bins. In Tables c) and d), the counts in the Tables a) and b) are accumulated across each row. Then, in Tables e) and f), the accumulated frequencies in Tables c) and d) are accumulated down each column. This produces a field of frequencies on a cumulative basis that run from a low value in the upper left corner of each matrix to a high number in the lower right corner of each matrix. The value in the lower right hand corner of Tables e) and f) is equal to the total number of observations in the target or cycle matrix. These total observation numbers in the lower right hand corner of e) and f) are used to normalize all of the frequencies in Tables e) and f) to arrive at the normalized cumulative matrices in g) and h). The values in g) and h) are then used to calculate the square of the differences in each corresponding matrix element to produce the values in Table i). The value in Table j) is just the summation of all of the elements of Table i) and represents the square of the length of the **T-C** vector. This is the value that we attempt to minimize when selecting micro-trips for the cycle.

Note that the counts in a) and b) did not need to be in corresponding bins for this comparison process to work. The use of cumulative distributions permitted the two matrices to be compared successfully.

Extension of the technique to the third dimension for vehicle specific power or any number of higher dimensions could be made by analogy.

Table 4-6. Comparison of Cycle and Target Matrices for a Hypothetical Two-**Dimensional Example**

Target Activity Matrix

Cycle Activity Matrix

a) Count the second-by-second observations in each bin. A B C D E F <u>G H</u>

	A A	B	C	D	E	F	G	H	I	J
1	2									
2		1								
3		2		5						
4			5		3		2	1		
5		5		9	1			2	9	3
6			2			4	1			
7										
8			6			1				
9		1								
0										

c) Accumulate t	ha ahava fraquanci	as across each row
	ne above nequenci	5 auiuss cauii iuw

1	2	2	2	2	2	2	2	2	2	2
2	0	1	1	1	1	1	1	1	1	1
3	0	2	2	7	7	7	7	7	7	7
4	0	0	5	5	8	8	10	11	11	11
5	0	5	5	14	15	15	15	17	26	29
6	0	0	2	2	2	6	7	7	7	7
7	0	0	0	0	0	0	0	0	0	0
8	0	0	6	6	6	7	7	7	7	7
9	0	1	1	1	1	1	1	1	1	1
Ω	0	0	0	0	0	0	0	0	0	0

	e) Acc	umulate	e the at	pove fre	equenci	es dow	n each	columr	۱.	
1	2	2	2	2	2	2	2	2	2	2
2	2	3	3	3	3	3	3	3	3	3
3	2	5	5	10	10	10	10	10	10	10
4	2	5	10	15	18	18	20	21	21	21
5	2	10	15	29	33	33	35	38	47	50
6	2	10	17	31	35	39	42	45	54	57
7	2	10	17	31	35	39	42	45	54	57
8	2	10	23	37	41	46	49	52	61	64
9	2	11	24	38	42	47	50	53	62	65
10	2	11	24	38	42	47	50	53	62	65

0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.031 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.046 0.031 0.077 0.077 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.154 0.031 0.077 0.154 0.231 0.277 0.277 0.308 0.323 0.323 0.323

0.031 0.154 0.262 0.477 0.538 0.600 0.646 0.692 0.831 0.87 0.031 0.154 0.354 0.569 0.631 0.708 0.754 0.800 0.938 0.985 0.031 0.169 0.369 0.585 0.646 0.723 0.769 0.815 0.954 1.000 0.031 0.169 0.369 0.585 0.646 0.723 0.769 0.815 0.954 1.000

0.508 0.538

0.585 0.723 0.769

0.600 0.646 0.692 0.831 0.877

g) Normalize the elements in the above matrix

0.031 0.154 0.231 0.446 0.508

0.031 0.154 0.262 0.477 0.538

10

ł	o) Count	the se	econd-b	y-seco	nd obs	ervatior	ns in ea	ach bin.
	· .	-	-	· _	_	_	-	

A	В	С	D	E	F	G	H		J
	1								
			4						
	4				3		1		
							4	1	
			8						2
				3					
						1			
1	5								

d) Accumulate the above frequencies across each row

0	0	0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	1	1	1
0	0	0	4	4	4	4	4	4	4
0	4	4	4	4	7	7	8	8	8
0	0	0	0	0	0	0	4	5	5
0	0	0	8	8	8	8	8	8	10
0	0	0	0	3	3	3	3	3	3
0	0	0	0	0	0	1	1	1	1
1	6	6	6	6	6	6	6	6	6
0	0	0	0	0	0	0	0	0	0

f) Accumulate the above frequencies down each column.

0	0	0	0	0	0	0	0	0	0
0	1	1	1	1	1	1	1	1	1
0	1	1	5	5	5	5	5	5	5
0	5	5	9	9	12	12	13	13	13
0	5	5	9	9	12	12	17	18	18
0	5	5	17	17	20	20	25	26	28
0	5	5	17	20	23	23	28	29	31
0	5	5	17	20	23	24	29	30	32
1	11	11	23	26	29	30	35	36	38
1	11	11	23	26	29	30	35	36	38

0.000 0.000 <th< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>										
0.000 0.026 0.032 0.342 <td< td=""><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td><td>0.000</td></td<>	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
0.000 0.026 0.026 0.132 0.342 <td< td=""><td>0.000</td><td>0.026</td><td>0.026</td><td>0.026</td><td>0.026</td><td>0.026</td><td>0.026</td><td>0.026</td><td>0.026</td><td>0.026</td></td<>	0.000	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026	0.026
0.000 0.132 0.132 0.237 0.237 0.316 0.342 0.342 0.342 0.000 0.132 0.132 0.237 0.237 0.316 0.316 0.342 0.342 0.342 0.000 0.132 0.132 0.237 0.237 0.237 0.316 0.316 0.447 0.474 0.474 0.000 0.132 0.132 0.447 0.447 0.526 0.526 0.658 0.684 0.737 0.000 0.132 0.132 0.447 0.526 0.605 0.605 0.673 0.763 0.849 0.000 0.132 0.132 0.447 0.526 0.605 0.605 0.673 0.763 0.849 0.000 0.132 0.132 0.447 0.526 0.605 0.605 0.763 0.763 0.842	0.000	0.026	0.026	0.132	0.132	0.132	0.132	0.132	0.132	0.132
0.000 0.132 0.132 0.237 0.237 0.316 0.316 0.447 0.474 0.474 0.000 0.132 0.132 0.447 0.447 0.526 0.526 0.658 0.684 0.737 0.000 0.132 0.132 0.447 0.526 0.605 0.605 0.737 0.763 0.816 0.000 0.132 0.132 0.447 0.526 0.605 0.603 0.763 0.763 0.846	0.000	0.132	0.132	0.237	0.237	0.316	0.316	0.342	0.342	0.342
0.000 0.132 0.132 0.447 0.447 0.526 0.526 0.658 0.684 0.737 0.000 0.132 0.132 0.447 0.526 0.605 0.605 0.737 0.763 0.816 0.000 0.132 0.132 0.447 0.526 0.605 0.632 0.763 0.780 0.842	0.000	0.132	0.132	0.237	0.237	0.316	0.316	0.447	0.474	0.474
0.000 0.132 0.132 0.447 0.526 0.605 0.605 0.737 0.763 0.816	0.000	0.132	0.132	0.447	0.447	0.526	0.526	0.658	0.684	0.737
0 000 0 132 0 132 0 447 0 526 0 605 0 632 0 763 0 789 0 842	0.000	0.132	0.132	0.447	0.526	0.605	0.605	0.737	0.763	0.816
0.000 0.102 0.102 0.111 0.020 0.000 0.002 0.100 0.100	0.000	0.132	0.132	0.447	0.526	0.605	0.632	0.763	0.789	0.842
0.026 0.289 0.289 0.605 0.684 0.763 0.789 0.921 0.947 1.000	0.026	0.289	0.289	0.605	0.684	0.763	0.789	0.921	0.947	1.000
0.026 0.289 0.289 0.605 0.684 0.763 0.789 0.921 0.947 1.000	0.026	0.289	0.289	0.605	0.684	0.763	0.789	0.921	0.947	1.000

i) Calculate the squares of the differences in corresponding elements of the above two matrices.

	Α	В	С	D	Е	F	G	Н	I	J
1	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001	0.001
2	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3	0.001	0.003	0.003	0.000	0.000	0.000	0.000	0.000	0.000	0.000
4	0.001	0.003	0.000	0.000	0.002	0.002	0.000	0.000	0.000	0.000
5	0.001	0.000	0.010	0.044	0.073	0.037	0.050	0.019	0.062	0.087
6	0.001	0.000	0.017	0.001	0.008	0.005	0.014	0.001	0.021	0.020
7	0.001	0.000	0.017	0.001	0.000	0.000	0.002	0.002	0.005	0.004
8	0.001	0.000	0.049	0.015	0.011	0.010	0.015	0.001	0.022	0.020
9	0.000	0.014	0.006	0.000	0.001	0.002	0.000	0.011	0.000	0.000
10	0.000	0.014	0.006	0.000	0.001	0.002	0.000	0.011	0.000	0.000

j) Sum the squares of the differences. 0.754

4.3 Development of the Twelve Drive Cycles for Inclusion in MOVES

The dataset containing all of the second-by-second driving activity for the Kansas City vehicles was edited and prepared as described in Section 4.1, resulting in a set of micro-trips distributed into twelve bins according to mean speed and dominant road type. The approach described in Section 4.2 was then used to select the micro-trips that would comprise a drive cycle for each of the twelve bins. The micro-trip speed and acceleration information was used to find those micro-trips which, when concatenated, best described the driving activity for each bin. For each bin, ERG's SAS-based cycle development program converted each micro-trip into a speed/acceleration vector and the entire set of micro-trips for that bin into the speed/acceleration target vector \mathbf{T} . The program then found the micro-trip whose sum of the squares difference between the cumulative normalized elements of the micro-trip with the corresponding elements of the target was the smallest. This corresponded to finding the micro-trip such that the **T-C** vector was the smallest. This became the first micro-trip in the cycle, for that bin. Then, the program looked through all remaining micro-trips from the bin to find the best second micro-trip such that when it was added to the first micro-trip the new vector **T-C** had a minimum length. This process may be repeated until the developer wants to stop searching. In this study, we stopped searching after 25 micro-trips were added to a cycle.

Finally, a 20-second idle period was added to the beginning of each micro-trip, representing the mean idle time that was found for micro-trips from each road type/ speed bin combination.

Plots of the square of the length of the **T-C** vector as micro-trips were added to the cycle for each bin are presented in Appendix B in Figures B-1a through B-11. These are the sum of the squared differences between the cycle vector **C** and the target vector **T**. The left vertical axis of each figure shows that the square of the length of the **T-C** vector drops continuously as additional micro-trips are added to the cycle (red line). The right vertical axis of each figure shows the cumulative duration of the cycle as additional micro-trips are added to the cycle (dashed black line). What these figures reveal is that none of the cycles really need all 25 microtrips to adequately represent the driving for the bin. For each of the twelve cycles, little additional benefit was achieved by adding micro-trips after about the 15th trip; the sum of the squared differences between the vectors did not continue to decrease after that point. Additionally, the use of 25 micro-trips tended to make the final cycle much longer than the cycles of 1000 seconds or so that are currently used in MOVES. This was especially true for the higher-speed bins, whose micro-trips tended to be much longer than the micro-trips for the lower-speed bins. Therefore, we elected to use only the first 15 micro-trips for each of the cycles, with the exception of the two highest speed cycles. These are the Restricted 50-60 cycle, for which only the first five micro-trips would be used, and the Restricted 60+ cycle, for which only the first seven micro-trips would be used. These two cycles contain micro-trips that are very long, but the figures show slight minimums in the values of the sum of the squared differences, at the fifth and the seventh micro-trip, respectively.

Speed versus Time Traces for Candidate Cycles

After the micro-trips for the twelve cycles were selected, several evaluations of the cycles were made, including comparisons of the cycle to the target dataset. First, we examined a speed versus time plot of the micro-trips that make up each cycle, shown in Appendix B in Figures B-2a through B-2l. The small circles on the plot indicate the beginning of each micro-trip. These candidate cycle plots were used to examine the overall appearance of the cycle and to show the duration of the cycle. These figures show that the micro-trips for the different road types and speed bins clearly represent different types of driving.

Comparison of Statistics for Cycle and Target

We also made comparisons of the chosen cycles to the corresponding target datasets. In particular, we wished to confirm that the speed and acceleration characteristics of the two were similar. We first examined scatter plots of acceleration versus speed for the candidate cycle and for the target dataset. Rather than show all 24 plots here, only a sample are shown in Appendix B in Figures B-3a through B-3d: a comparison of speed versus acceleration for the cycle and the target for the Restricted 50-60 MPH bin, and for the Unrestricted 25-28 MPH bin. All of the data points for the cycle are shown on the two cycle plots, but due to the large size of the target databases, only a random subset of the target data is shown on either of the two target plots. Comparison of Figures B-3a and B-3b shows that the Cycle and the Target contain a very similar speed versus acceleration profile, with the highest density of data between speeds of 60 and 70 MPH and accelerations between -2 to 2 MPH/S, somewhat lighter concentration between 30 and 40 MPH. However, while the target database contains quite a few observations with speeds near 80 MPH, there are fewer of these high speeds in the cycle. For Figures B-3c and B-3d, the cycle and the target again look similar. Here the densest area of points is at about 30 MPH, and again, we see more observations at the highest speeds (above 45 MPH) in the target than in the cycle. It appears that a few trips in the target bins contain outliers: short amounts of especially high speed (for that bin) driving. Because they are few in number, they do not comprise the majority of the driving for the bin, and do not get selected for inclusion in the cycle. This was observed for most of the 12 bins, and has been seen in ERG's previous cycle building projects as well.

The frequency distributions of speeds found in the new cycles and the corresponding target databases are shown in Figures B-4a through B-4d. Again, this is only a sample, for the Restricted 50-60 MPH bin and the Unrestricted 25-28 MPH bin. From these figures we see once more that while the speed distributions for the cycles and the targets are similar, the target does contain a few slightly higher speeds than the cycle.

A number of statistics were calculated so that the characteristics of the cycles could be compared to the characteristics of the respective target datasets. These statistics are listed in Table 4-7. It is important to remember when comparing any of these statistics that the micro-trips in the each cycle were selected only because their non-idle speed and acceleration characteristics match those of the target. Any other statistics that are calculated and compared were not the basis, or at least not the direct basis, for choosing the micro-trips for the cycles.

Table 4-7 shows that the average second-by-second speeds of the selected cycle and target database are similar, although the cycle speeds are slightly lower than those in the target dataset. This corresponds to what was observed in Figures B-3 and B-4 in Appendix B: there are a few especially high speeds in each target bin that are not representative of the target bin as a whole, and thus were not selected for inclusion in the cycles. They do, however, raise the mean speed of the target slightly above that of the cycle. Finally, Table-4-7 shows that the square of the length of **T-C** was very low for each of the cycles. This indicates a good fit of the driving conditions (speed and acceleration) in the selected cycle, compared to the target database.
		Target				(Cycle			
	Average Speed (mph)	Average Micro-Trip Time (s)	Average Micro-Trip Distance (miles)	Average Speed (mph)	Average Micro-Trip Time (s)	Average Micro-Trip Distance (miles)	Total Time (s)	Total Distance (miles)	Micro- Trips (count)	Final Square of L. of T-C
Rest. 0-20	16	56	0.25	12	75	0.26	1127	3.91	15	0.012
Rest. 20-30	26	77	0.55	20	87	0.49	1300	7.38	15	0.013
Rest. 30-40	35	188	1.85	32	189	1.70	2842	25.45	15	0.013
Rest. 40-50	45	354	4.43	42	320	3.77	4801	56.54	15	0.015
Rest. 50-60	55	863	13.12	54	834	12.43	4170	62.15	5	0.022
Rest. 60+	63	953	16.57	61	713	12.05	4989	84.37	7	0.054
Unrst. 0-15	9	44	0.11	6	62	0.11	924	1.66	15	0.028
Unrst. 15-20	18	108	0.55	15	94	0.38	1405	5.76	15	0.013
Unrst. 20-25	23	132	0.83	19	109	0.57	1634	8.60	15	0.011
Unrst. 25-28	27	275	2.03	24	181	1.20	2713	18.00	15	0.011
Unrst. 28-32	30	262	2.15	27	186	1.38	2783	20.72	15	0.01
Unrst. 32+	39	263	2.86	35	190	1.85	2845	27.73	15	0.037

Table 4-7. Comparison of Dataset and Cycle Operation Characteristics

MOVES Modeling of Kansas City Drive Cycles

Drive cycles within the MOVES database are stored in three tables of interest: *driveschedule, drivescheduleassoc*, and *driveschedulesecond*. Per discussions with EPA staff²⁷, it was necessary to completely replace the existing MOVES light duty drive cycles, in order to avoid potential interpolation issues during model calculations. This was done by removing selected light duty drive cycles from the default database, and importing the new drive cycle data described above using completely new *drivescheduleIDs*.

First, using the default *driveschedule* table as a basis, we eliminated all existing light duty drive cycles with the exception of *drivescheduleIDs* 101 and 199. In this case, the former was intended to simulate very low speeds (average 2.5 mph), and the latter was intended to simulate activity on ramps. Both instances were such that we did not feel they could be accurately simulated with the Kansas City drive cycles we developed dataset, so they were left intact. The *driveschedule* table was then populated with the proper data.

Similarly, the default *drivescheduleassoc* and *driveschedulesecond* tables were cleansed of existing light duty cycles, and new information was imported. In the case of *drivescheduleassoc*, Restricted cycles were associated with MOVES roadtypeIDs 2 and 4, while Unrestricted cycles were associated with MOVES roadtypeIDs 3 and 5. Associations were made for MOVES sourcetypeIDs 11, 21, 31, and 32, which correspond to motorcycles, passenger cars, passenger trucks, and light commercial trucks, respectively. These associations are consistent with the default drive cycles removed from the MOVES database. In the case of *driveschedulesecond*, new data was added for each cycle on a second-by-second basis, using speeds calculated during the development process described above.

Having populated updated tables containing new Kansas City study-based cycles for light duty vehicles, it was necessary to then replace each of the existing MOVES default drive cycle tables and perform additional modeling. Before doing so, ERG used the MySQL Administrator program, which is typically included with during a normal MOVES installation, to make a SQL backup of the existing three tables of interest. This is important for two reasons: first, to have a backup of the affected tables in case there is an error during the import of the new drive cycles tables; and secondly, to be able to easily switch back to the default MOVES drive cycles for future modeling. Users should be aware that alteration of drive cycle tables in this way will

²⁷ Note that we are not aware of any formal guidance from EPA on replacement of drive cycles in the model. We consulted directly David Brzezinski and Sean Hillson at EPA during this stage of our study.

affect all future modeling runs done on an individual computer system, so it's crucial to backup the default drive cycles in such a way that they can be easily restored.²⁸

Loading of the updated drive cycle tables was done with a simple SQL script, in which the existing default tables were truncated, and the new tables were imported in the form of .tabdelimited text files. Having successfully loaded the new tables, a backup was made again, using MySQL administrator, for ease of switching between drive cycle sets. Finally, the TDM-based and HPMS-based MOVES runs described in Sections 2 and 3 were re-created and re-run using the updated drive cycles to provide additional model outputs for further analysis. Comparisons of model outputs are discussed in Sections 5 and 6 below.

For reference, all of the MOVES database tables and SQL scripts described in this section are provided as electronic files in Appendix A.

²⁸ Note that the most current version of MOVES at this writing, MOVES2010a, allows users to alter the drive cycle tables discussed in this section via the County Data Manager GUI, rendering obsolete the procedure described here for importing alternate drive cycles into MOVES.

5.0 Model Outputs

MOVES outputs from the model runs performed during this study are summarized in this section. These include the TDM-based and HPMS-based model runs originally performed for each of the eight counties in the Houston-Galveston non-attainment area, as well as the model runs conducted for the same region and VMT bases using the alternate Kansas City drive cycles described above in Section 4. These outputs are described in additional detail below.

5.1 Comparison of MOVES Outputs to MOBILE-6 Based Inventory

First, ERG compared the two sets of MOVES runs conducted using the default drive cycles to the original TTI MOBILE6 based inventory²⁹, which was previously described in detail in Section 2.0. Table 5-1 presents ERG's modeled TDM-based and HPMS-based MOVES model outputs, along with TTI's MOBILE6 inventory emissions in tons, by county, for a Non-School ozone season weekday. Table 5-2 presents the percent difference between both sets of MOVES runs and the original TTI inventory. Note that according to these tables, MOVES is calculating significantly higher NOx emissions across the board, regardless of the VMT basis used for model inputs. There is a wider variance in emissions for CO and VOC; counties with relatively few VMT return a decrease in CO and VOC, while counties with more VMT are associated with a significant increase in CO and VOC. The largest county (in terms of both VMT and population), Harris county, demonstrates much higher emissions of all three pollutants of interest relative to the MOBILE6 inventory.

Note that generally, as shown in Table 5-1, the HPMS VMT being modeled is somewhat higher (for most counties) relative to the modeled MOBILE6 inventory, which in turn leads to higher emissions relative to that same inventory. We conclude here that it's very important, regardless of the VMT basis chosen for calculation, for users to be sure that their activity data is representative, since the model outputs are highly sensitive to it.

²⁹ All references to the MOBILE6-based TTI inventory in this section are based on TTI's *Production of MOVES On-Road Mobile, Link-Based Emissions Estimates and Document Preparation Technical Note*, submitted to TCEQ in July 2010, in which TTI assessed the 2005 and 2006 years using both MOVES and MOBILE6. This is the most recently available document from TTI that discusses summaries of their MOBILE6 –based inventory for 2005 and 2006. This document was produced subsequent to TTI's *2005/2006 On-Road Mobile Source, Ozone Episode Modeling Emission Inventories for the HGB Eight-Hour Nonattainment Area,* which was the source of the data we based this analysis upon originally.

	ERG MO	OVES, TL	OM-based V	VMT	ERG MO	VES, HP	MS-based	VMT	TTI MOBILE6 Inventory			
County	VMT	VOC	СО	NOx	VMT	VOC	СО	NOx	VMT	VOC	СО	NOx
Brazoria	5,708,326	4.233	46.032	11.457	5,810,915	4.427	47.051	12.852	5,728,510	3.659	47.044	8.704
Chambers	2,508,488	0.950	17.900	4.638	2,565,380	1.043	21.123	5.389	2,519,042	1.815	29.611	5.072
Fort Bend	7,948,707	5.493	61.357	15.746	8,382,481	5.834	64.235	18.171	7,994,337	4.662	62.013	11.965
Galveston	5,816,257	4.117	48.031	11.762	5,941,357	4.218	51.160	13.253	5,850,101	3.89	47.37	8.696
Harris	96,544,278	78.159	870.197	204.910	104,118,424	81.555	936.121	241.000	97,155,857	66.433	792.438	147.484
Liberty	2,524,022	1.539	20.206	5.223	2,369,354	1.532	19.093	5.334	2,529,328	2.291	29.303	4.502
Montgomery	10,096,087	6.379	76.684	20.107	10,079,347	6.510	77.152	21.582	10,141,862	6.173	82.879	16.415
Waller	1,946,771	1.490	19.040	4.188	1,880,278	1.526	19.375	4.433	1,949,623	1.785	24.601	3.901
TOTAL	133,092,936	102.359	1159.447	278.032	141,147,536	106.645	1235.310	322.014	133,868,660	90.708	1115.259	206.739

 Table 5-1. Summary of VMT and Tons of Emissions, by County, Non-school Ozone Season Weekday

Table 5-2. Percent Difference between MOVES and MOBILE6 Inventory Results

	% Diț	ference, ' relative to	TDM VMT MOBILE	T basis, 6	% Difference, HPMS VMT basis, relative to MOBILE6				
County	VMT	VOC	CO	NOx	VMT	VOC	CO	NOx	
Brazoria	-0.4%	15.7%	-2.2%	31.6%	1.4%	21.0%	0.0%	47.7%	
Chambers	-0.4%	-47.7%	-39.6%	-8.6%	1.8%	-42.5%	-28.7%	6.3%	
Fort Bend	-0.6%	17.8%	-1.1%	31.6%	4.9%	25.1%	3.6%	51.9%	
Galveston	-0.6%	5.8%	1.4%	35.3%	1.6%	8.4%	8.0%	52.4%	
Harris	-0.6%	17.7%	9.8%	38.9%	7.2%	22.8%	18.1%	63.4%	
Liberty	-0.2%	-32.8%	-31.0%	16.0%	-6.3%	-33.1%	-34.8%	18.5%	
Montgomery	-0.5%	3.3%	-7.5%	22.5%	-0.6%	5.5%	-6.9%	31.5%	
Waller	-0.1%	-16.5%	-22.6%	7.4%	-3.6%	-14.5%	-21.2%	13.6%	
TOTAL	-0.6%	12.8%	4.0%	34.5%	5.4%	17.6%	10.8%	55.8%	

Tables 5-3 and 5-4 present emissions and VMT split by light-duty and heavy duty vehicle classification. Consistent with summaries found in TTI's July 2010 *Technical Note*, vehicle classes in the MOBILE6 summaries are defined as follows:

- *Light duty vehicles* include those classified as LDGV, LDGT1, LDGT2, LDGT3, LDGT4, LDDV, LDDT12, MC, and LDDT34.
- *Heavy duty vehicles* include all other classes.

Similarly, TTI defined light- and heavy-duty vehicles in MOVES output summaries as follows:

- *Light duty vehicles* include the source types Motorcycles, Passenger Cars, Passenger Trucks, and Light commercial Trucks.
- *Heavy duty vehicles* include all MOVES source type.

For consistency we have duplicated this classification scheme in the following tables. The reader will immediately note in Table 5-4 the large discrepancy in VMT when comparing heavy duty VMT modeled in MOVES to the heavy duty VMT originally modeled by TTI in MOBILE6. For example, the HD VMT modeled under the TDM-based VMT scenario is between 35 and 40 percent less than that modeled in MOBILE6. This is a result of attempting to directly compare emissions aggregated under MOBILE6 *vehicle* types (which classify vehicles on a GVWR weight basis) versus emissions aggregated under MOVES source types (which classify vehicles based on their expected mode of operation). In particular, vehicle types HDDV2B through HDDV5 inclusive (along with their gasoline counterparts), considered heavy-duty in MOBILE6, map to MOVES source types 31 (passenger trucks) and 32 (light commercial trucks). These are considered "light-duty" under the TTI classification. Because of this, it is difficult to draw conclusions about emissions when differentiating by vehicle classification, but we include the tables below for reference.

ERG MOVES, TDM-based VMT										
	VMT		VOC		CO		NOx			
		Heavy	Light	Heavy	Light	Heavy	Light	Heavy		
County	Light Duty	Duty	Duty	Duty	Duty	Duty	Duty	Duty		
Brazoria	5,384,087	324,239	3.873	0.360	43.806	2.226	6.511	4.945		
Chambers	2,368,948	139,540	0.836	0.113	17.175	0.725	2.636	2.002		
Fort Bend	7,486,363	462,344	4.929	0.563	57.827	3.530	8.396	7.349		
Galveston	5,490,933	325,324	3.725	0.392	45.727	2.304	6.566	5.196		
Harris	91,292,024	5,252,254	71.501	6.658	828.843	41.353	117.144	87.766		
Liberty	2,379,054	144,968	1.394	0.145	19.192	1.014	3.119	2.104		
Montgomery	9,487,457	608,630	5.720	0.659	72.649	4.035	10.620	9.487		
Waller	1,834,222	112,549	1.393	0.096	18.427	0.614	2.593	1.596		
TOTAL	125,723,088	7,369,848	93.373	8.986	1103.645	55.802	157.586	120.446		

Table 5-3. Summary of VMT and Tons of Emissions, by County and VehicleClassification, Non-school Ozone Season Weekday

ERG MOVES, HPMS-based VMT									
	VMT		VOC		CO		NOx		
		Heavy	Light	Heavy	Light	Heavy	Light	Heavy	
County	Light Duty	Duty	Duty	Duty	Duty	Duty	Duty	Duty	
Brazoria	5,350,307	460,608	3.922	0.505	43.709	3.342	6.399	6.453	
Chambers	2,361,987	203,393	0.881	0.162	19.870	1.253	2.749	2.640	
Fort Bend	7,718,045	664,436	5.048	0.786	58.974	5.261	8.483	9.689	
Galveston	5,470,464	470,893	3.692	0.525	47.672	3.488	6.474	6.779	
Harris	95,863,528	8,254,896	72.015	9.540	870.072	66.049	119.679	121.321	
Liberty	2,181,503	187,851	1.347	0.185	17.744	1.349	2.860	2.474	
Montgomery	9,280,219	799,128	5.682	0.828	71.543	5.609	10.299	11.283	
Waller	1,731,203	149,075	1.397	0.129	18.457	0.918	2.521	1.912	
TOTAL	129,957,256	11,190,280	93.986	12.659	1148.040	87.270	159.462	162.552	

TTI MOBILE6 Inventory									
	VMT		VOC		CO		NOx		
		Heavy	Light	Heavy	Light	Heavy	Light	Heavy	
County	Light Duty	Duty	Duty	Duty	Duty	Duty	Duty	Duty	
Brazoria	5,188,114	540,396	3.424	0.235	45.400	1.644	3.726	4.978	
Chambers	2,302,383	216,659	1.735	0.080	28.854	0.757	2.050	3.022	
Fort Bend	7,227,617	766,720	4.303	0.359	59.541	2.472	4.859	7.106	
Galveston	5,310,752	539,349	3.633	0.257	45.601	1.770	3.713	4.984	
Harris	88,607,611	8,548,246	62.147	4.285	762.826	29.612	64.143	83.341	
Liberty	2,289,017	240,311	2.194	0.096	28.581	0.722	2.228	2.275	
Montgomery	9,135,188	1,006,674	5.734	0.439	79.721	3.157	6.491	9.924	
Waller	1,769,669	179,955	1.718	0.069	24.013	0.589	1.752	2.149	
TOTAL	121,830,351	12,038,310	84.888	5.820	1074.537	40.723	88.962	117.779	

% Difference, TDM VMT basis, relative to MOBILE6									
	VMT		VOC		CO		NOx		
		Heavy	Light	Heavy	Light	Heavy	Light	Heavy	
County	Light Duty	Duty	Duty	Duty	Duty	Duty	Duty	Duty	
Brazoria	3.8%	-40.0%	13.1%	53.1%	-3.5%	35.4%	74.8%	-0.7%	
Chambers	2.9%	-35.6%	-51.8%	41.6%	-40.5%	-4.2%	28.6%	-33.7%	
Fort Bend	3.6%	-39.7%	14.6%	56.9%	-2.9%	42.8%	72.8%	3.4%	
Galveston	3.4%	-39.7%	2.5%	52.5%	0.3%	30.2%	76.8%	4.3%	
Harris	3.0%	-38.6%	15.1%	55.4%	8.7%	39.7%	82.6%	5.3%	
Liberty	3.9%	-39.7%	-36.5%	51.3%	-32.9%	40.5%	40.0%	-7.5%	
Montgomery	3.9%	-39.5%	-0.2%	50.0%	-8.9%	27.8%	63.6%	-4.4%	
Waller	3.6%	-37.5%	-18.9%	39.8%	-23.3%	4.2%	48.0%	-25.7%	
TOTAL	3.2%	-38.8%	10.0%	54.4%	2.7%	37.0%	77.1%	2.3%	

Table 5-4. Percent Difference between MOVES and MOBILE6 Inventory Results,by Vehicle Classification

% Difference, HPMS VMT basis, relative to MOBILE6									
	VMT		VOC		СО		NOx		
		Heavy	Light	Heavy	Light	Heavy	Light	Heavy	
County	Light Duty	Duty	Duty	Duty	Duty	Duty	Duty	Duty	
Brazoria	3.1%	-14.8%	14.6%	114.8%	-3.7%	103.3%	71.7%	29.6%	
Chambers	2.6%	-6.1%	-49.2%	102.2%	-31.1%	65.6%	34.1%	-12.6%	
Fort Bend	6.8%	-13.3%	17.3%	118.9%	-1.0%	112.8%	74.6%	36.3%	
Galveston	3.0%	-12.7%	1.6%	104.4%	4.5%	97.1%	74.4%	36.0%	
Harris	8.2%	-3.4%	15.9%	122.6%	14.1%	123.0%	86.6%	45.6%	
Liberty	-4.7%	-21.8%	-38.6%	92.3%	-37.9%	86.8%	28.3%	8.8%	
Montgomery	1.6%	-20.6%	-0.9%	88.7%	-10.3%	77.7%	58.7%	13.7%	
Waller	-2.2%	-17.2%	-18.7%	86.5%	-23.1%	55.9%	43.9%	-11.0%	
TOTAL	6.7%	-7.0%	10.7%	117.5%	6.8%	114.3%	79.2%	38.0%	

Tables 5-5 and 5-6 present emissions and VMT split by on-network and off-network process classification. Processes associated with running exhaust and evaporative emissions were classified as on-network, while off-network processes included emissions due to vehicle starts and extended idling. This classification is consistent with that proposed in TTI's July 2010 *Technical Note*.

Table 5-5. Summary of VMT and Tons of Emissions, by County and EmissionsProcess Classification, Non-school Ozone Season Weekday

ERG MOVES, TDM-based VMT										
	VMT		VOC		СО		NOx			
		Off-	On-	Off-	On-	Off-	On-	Off-		
County	On-Network	Network								
Brazoria	5,708,326	0	2.655	1.578	33.711	12.321	9.896	1.561		
Chambers	2,508,488	0	0.776	0.173	16.787	1.112	4.471	0.167		
Fort Bend	7,948,707	0	3.465	2.027	45.518	15.839	13.631	2.114		
Galveston	5,816,257	0	2.747	1.370	37.998	10.033	10.371	1.391		
Harris	96,544,278	0	51.308	26.850	672.636	197.561	177.997	26.914		
Liberty	2,524,022	0	1.153	0.386	17.275	2.931	4.858	0.364		
Montgomery	10,096,087	0	4.254	2.125	59.757	16.927	17.963	2.144		
Waller	1,946,771	0	0.945	0.544	14.301	4.740	3.720	0.469		
TOTAL	133,092,936	0	67.304	35.055	897.982	261.464	242.907	35.124		

ERG MOVES, HPMS-based VMT										
	VMT		VOC		CO		NOx			
		Off-	On-	Off-	On-	Off-	On-	Off-		
County	On-Network	Network								
Brazoria	5,810,915	0	2.825	1.602	34.699	12.351	11.231	1.621		
Chambers	2,565,380	0	0.863	0.180	20.005	1.118	5.211	0.179		
Fort Bend	8,382,481	0	3.765	2.068	48.346	15.889	15.958	2.213		
Galveston	5,941,357	0	2.829	1.389	41.105	10.056	11.818	1.435		
Harris	104,118,424	0	54.261	27.294	738.071	198.050	213.114	27.886		
Liberty	2,369,354	0	1.143	0.389	16.157	2.936	4.959	0.375		
Montgomery	10,079,347	0	4.367	2.144	60.201	16.951	19.389	2.193		
Waller	1,880,278	0	0.979	0.547	14.631	4.744	3.956	0.477		
TOTAL	141,147,536	0	71.032	35.613	973.216	262.094	285.635	36.379		

TTI MOBILE6 Inventory										
	VMT		VOC		СО		NOx			
		Off-	On-	Off-	On-	Off-	On-	Off-		
County	On-Network	Network								
Brazoria	5,728,510	0	1.540	2.119	35.645	11.399	8.074	0.630		
Chambers	2,519,042	0	0.680	1.135	23.798	5.813	4.752	0.320		
Fort Bend	7,994,337	0	2.105	2.557	47.126	14.887	11.194	0.771		
Galveston	5,850,101	0	1.705	2.185	35.768	11.602	8.077	0.619		
Harris	97,155,857	0	29.493	36.940	601.275	191.163	136.906	10.578		
Liberty	2,529,328	0	0.883	1.408	22.528	6.775	4.128	0.374		
Montgomery	10,141,862	0	2.615	3.558	62.455	20.424	15.355	1.060		
Waller	1,949,623	0	0.637	1.148	19.379	5.222	3.613	0.288		
TOTAL	133,868,660	0	39.658	51.050	847.974	267.285	192.099	14.640		

Table 5-6. Percent Difference between MOVES and MOBILE6 Inventory Results	3,
by Emissions Process Classification	

% Difference, TDM VMT basis, relative to MOBILE6											
	VMT		VOC		СО		NOx				
		Off-	On-	Off-	On-	Off-	On-	Off-			
County	On-Network	Network									
Brazoria	-0.4%	0.0%	72.4%	-25.5%	-5.4%	8.1%	22.6%	147.7%			
Chambers	-0.4%	0.0%	14.1%	-84.7%	-29.5%	-80.9%	-5.9%	-47.8%			
Fort Bend	-0.6%	0.0%	64.6%	-20.7%	-3.4%	6.4%	21.8%	174.2%			
Galveston	-0.6%	0.0%	61.1%	-37.3%	6.2%	-13.5%	28.4%	124.7%			
Harris	-0.6%	0.0%	74.0%	-27.3%	11.9%	3.3%	30.0%	154.4%			
Liberty	-0.2%	0.0%	30.6%	-72.6%	-23.3%	-56.7%	17.7%	-2.6%			
Montgomery	-0.5%	0.0%	62.7%	-40.3%	-4.3%	-17.1%	17.0%	102.2%			
Waller	-0.1%	0.0%	48.4%	-52.6%	-26.2%	-9.2%	2.9%	62.8%			
TOTAL	-0.6%	0.0%	69.7%	-31.3%	5.9%	-2.2%	26.4%	139.9%			

% Difference, HPMS VMT basis, relative to MOBILE6											
	VMT		VOC		СО		NOx				
		Off-	On- Off-		On- Off-		On-	Off-			
County	On-Network	Network	Network	Network	Network	Network	Network	Network			
Brazoria	1.4%	0.0%	83.4%	-24.4%	-2.7%	8.4%	39.1%	157.4%			
Chambers	1.8%	0.0%	27.0%	-84.2%	-15.9%	-80.8%	9.7%	-44.2%			
Fort Bend	4.9%	0.0%	78.9%	-19.1%	2.6%	6.7%	42.6%	187.0%			
Galveston	1.6%	0.0%	65.9%	-36.4%	14.9%	-13.3%	46.3%	131.9%			
Harris	7.2%	0.0%	84.0%	-26.1%	22.8%	3.6%	55.7%	163.6%			
Liberty	-6.3%	0.0%	29.4%	-72.4%	-28.3%	-56.7%	20.1%	0.2%			
Montgomery	-0.6%	0.0%	67.0%	-39.8%	-3.6%	-17.0%	26.3%	106.9%			
Waller	-3.6%	0.0%	53.7%	-52.3%	-24.5%	-9.2%	9.5%	65.7%			
TOTAL	5.4%	0.0%	79.1%	-30.2%	14.8%	-1.9%	48.7%	148.5%			

Complete summaries of emissions and VMT output by county for each model run performed, by VMT-basis (TDM or HPMS), drive cycle (default or Kansas City derived), vehicle classification (light- or heavy-duty), emissions process, and process classification (on- or off-network) are presented in Appendix C. Raw model outputs are also available in Appendix A.

5.2 Comparison of MOVES Default Drive Cycle Output to Alternate Drive Cycle Outputs

In performing comparisons of the modeling performed using MOVES default drive cycles to the modeling conducted using the Kansas City drive cycles developed by ERG, we limited our summaries to only those source types affected by the drive cycle changes. These included motorcycles, passenger cars, passenger trucks, and light commercial trucks (source types IDs 11, 21, 31, and 32, respectively).

Table 5-7 presents a comparison of modeled light duty emissions for the combined 8county Houston-Galveston area. Note that the Kansas City drive cycles produce slightly lower emissions for both VMT bases, in the range of approximately 1-3%. This difference is dominated by emissions from Harris county; in Appendix D, it can be seen that percent differences range from 1-17% on a by-county basis, with emissions from counties with fewer VMT showing the widest variance. It can also be seen that VOC tends to vary less than the other two pollutants modeled.

Table 5-7. Comparison of Eight County Light Duty Emissions for Both DriveCycles and VMT Bases (Overall tons)

	Defa	K	C Cycle		% Difference				
VMT Basis	СО	NOx	VOC	CO	NOx	VOC	СО	NOx	VOC
HPMS	1148.04	159.46	93.99	1129.63	157.46	92.83	-1.60%	-1.25%	-1.23%
TDM	1103.64	157.59	93.37	1073.96	153.37	91.97	-2.69%	-2.67%	-1.50%

Table 5-8 presents a comparison of combined light duty emissions by MOVES source type. The largest differences between the modeled drive cycles are seen in motorcycles, which are a relatively small portion of the light-duty fleet. Overall differences across source types and counties range from approximately +1% to -3%. As before, these emissions are dominated by results from Harris county, and other more rural counties exhibit wider variance in emissions between modeled drive cycles, as shown Appendix D.

		Default Cycle			KC Cycle			% Difference		
VMT	G	C O	NO	Noc	C O	NO	Noc	60	NO	NOG
Basis	Source	CO	NOX	VOC	CO	NOX	VOC	CO	NOX	VOC
	Motorcycles	12.62	0.49	2.66	11.74	0.45	2.63	-6.97%	-9.07%	-1.26%
	Passenger Cars	597.44	78.59	57.21	590.05	77.23	56.69	-1.24%	-1.73%	-0.90%
HPMS	Passenger Trucks	364.98	48.49	22.60	358.27	47.79	22.19	-1.84%	-1.45%	-1.81%
	Light Commercial									
	Trucks	173.00	31.90	11.52	169.56	32.00	11.32	-1.99%	0.33%	-1.73%
	Motorcycles	2.75	0.11	1.70	2.56	0.10	1.70	-6.92%	-8.91%	-0.44%
	Passenger Cars	588.28	78.81	57.55	575.52	76.43	56.91	-2.17%	-3.02%	-1.11%
TDM	Passenger Trucks	346.57	47.11	22.56	335.32	45.64	22.04	-3.25%	-3.13%	-2.27%
	Light Commercial									
	Trucks	166.04	31.55	11.56	160.56	31.20	11.32	-3.30%	-1.11%	-2.09%

 Table 5-8. Comparison of Eight County Light Duty Emissions for Both Drive

 Cycles and VMT Bases (Tons, by Source Type)

Table 5-9 presents combined light-duty emissions by MOVES road type. Variations in this table are fairly pronounced. Although there is virtually no change in off-network emissions (which is expected, as no drive cycles for that road type was modified), the Kansas City restricted road types (freeways) have approximately 3-8% higher emissions, while unrestricted road types (local roads) have emissions that are about 5-15% lower. These differences are independent from the rural/urban distinction, which is expected, since as described above we did not have enough microtrips in the Kansas City Data to make that distinction in the development of our final drive cycles. The variation also seems to be independent of VMT calculation basis.

Table 5-9. Comparison of Eight County Light Duty Emissions for Both DriveCycles and VMT Bases (Tons, by Road Type)

		Default Cycle			KC Cycle			% Difference		
VMT										
Basis	Road Type	CO	NOx	VOC	CO	NOx	VOC	CO	NOx	VOC
	Off-Network	254.27	29.35	52.59	254.27	29.35	52.53	0.00%	0.00%	-0.13%
	Rural Restricted	36.66	4.80	1.18	37.41	4.81	1.17	2.04%	0.32%	-0.13%
HPMS	Rural Unrestricted	99.23	16.50	5.29	84.53	14.18	4.92	-14.82%	-14.06%	-7.06%
	Urban Restricted	378.54	48.43	12.93	406.51	52.47	13.28	7.39%	8.32%	2.67%
	Urban Unrestricted	379.33	60.39	22.00	346.90	56.66	20.94	-8.55%	-6.17%	-4.81%
	Off-Network	254.27	29.35	52.53	254.27	29.35	52.46	0.00%	0.00%	-0.15%
	Rural Restricted	197.29	25.91	6.67	209.24	27.48	6.80	6.06%	6.06%	1.95%
TDM	Rural Unrestricted	404.17	66.26	22.81	364.38	60.38	21.59	-9.85%	-8.87%	-5.34%
	Urban Restricted	121.79	15.48	4.15	131.25	16.95	4.27	7.77%	9.46%	2.95%
	Urban Unrestricted	126.13	20.58	7.22	114.82	19.21	6.86	-8.97%	-6.67%	-4.99%

Table 5-10 presents combined light duty emissions by MOVES emission process ID. For CO and NOx, the only difference between modeled drive cycles is attributable to running exhaust and crankcase running exhaust, and is on the order of about 1-4% less, depending on

VMT basis. There is no difference at all in start emissions. For VOC, there is also no difference in start emissions, and further, no difference in evaporative emissions either. This is expected, since start emissions and evaporative emissions are both off-network processes, and as such, should be unaffected by changes to on-network drive cycles. However, there is larger variance in both exhaust and refueling emissions, approximately 4-6% less, depending on the VMT basis modeled.

		Default Cycle			ŀ	KC Cycle		% Difference		
VMT			NG	THO G	~~~	NO	Nog	~	NG	Noc
Basis	Process ID	CO	NOx	VOC	CO	NOx	VOC	CO	NOx	VOC
	Running Exh	893.63	130.10	29.42	875.22	128.11	28.35	-2.06%	-1.54%	-3.65%
	Start Exh	254.24	29.35	31.09	254.24	29.35	31.09	0.00%	0.00%	0.00%
	Evap Permeation			8.04			8.04			0.00%
	Evap Fuel Vent			19.83			19.83			0.00%
HPMS	Evap Fuel Leak			3.55			3.55			0.00%
	Crank Run Exh	0.14	0.01	0.39	0.13	0.01	0.37	-1.42%	2.87%	-3.59%
	Crank Start Exh	0.03	0.00	0.41	0.03	0.00	0.41	0.00%	0.00%	0.00%
	Refuel Disp Vap			0.52			0.49			-5.39%
	Refuel Spillage			0.73			0.69			-5.42%
	Running Exh	849.24	128.23	28.73	819.56	124.01	27.42	-3.50%	-3.29%	-4.56%
	Start Exh	254.24	29.35	31.09	254.24	29.35	31.09	0.00%	0.00%	0.00%
	Evap Permeation			8.04			8.04			0.00%
	Evap Fuel Vent			19.90			19.90			0.00%
TDM	Evap Fuel Leak			3.59			3.59			0.00%
	Crank Run Exh	0.13	0.01	0.39	0.13	0.01	0.37	-2.30%	1.55%	-4.46%
	Crank Start Exh	0.03	0.00	0.41	0.03	0.00	0.41	0.00%	0.00%	0.00%
	Refuel Disp Vap			0.51			0.47			-6.25%
	Refuel Spillage			0.72			0.67			-6.21%

Table 5-10. Comparison of Eight County Light Duty Emissions for Both Drive Cycles and VMT Bases (Tons, by Emission Process ID)

The information presented in Tables 7 through 10 above is also available on a by-county basis in Appendix D. As shown in these tables, the effects of implementing the drive cycles developed by ERG in MOVES varied considerably depending on which county was being modeled. The drive cycles we developed were based on largely urban driving data as discussed in Section 4, and applying these drive cycles to more rural counties in the Houston-Galveston area (as exhibited by fewer VMT driven in those counties) produced emissions that may not be representative. On the other hand, emissions from Harris County, the most urban of the counties modeled (with the corresponding largest daily VMT modeled), did not vary much at all. We believe that any alternate drive cycles developed and used in MOVES should closely match the type of driving activity for the area being modeled for emissions to be considered representative.

6.0 Conclusions

Although the technical analyses ERG performed during the course of this work are sometimes specific to the Houston and Kansas City metropolitan areas, we believe that the broadest benefit of this study will be in applying lessons learned in transitioning from traditional MOBILE6 modeling and inventory planning inputs to using MOVES effectively. With that in mind, we have included in this report not only analysis of model inputs and outputs, but also documentation of the process of running MOVES, example model runs that users can execute on their own computer systems, inventories they can compare their results against, and analysis of the ramifications of transitioning to the new MOVES system.

In the section that follows, we present important issues dealt with during the course of this project, with an emphasis on how users can deal with these issues themselves. We also discuss the study questions originally proposed in the project Work Plan.

6.1 Important Transition Issues

In order to effectively transition from use of MOBILE6 to MOVES in developing regional emissions analyses, users must not only understand how to use MOVES to develop inventories, but also keep in mind several issues arising from characterization of data that is input to both models. We list some of these significant concerns below.

Proper VMT Derivation and Inputs

Because VMT is perhaps the single most important variable in calculation of emissions, it is crucial to understand both the process of converting VMT into a format usable by MOVES, and the pros and cons of using various VMT bases. In this study, ERG explored the usage of two separate VMT types. The first was based on VMT derived from a travel demand model (TDM), and the second on VMT summarized in Highway Performance Monitoring System (HPMS) format. Users may have sources of VMT available to them in other formats as well, which may require the development of spreadsheets or other software tools in order to process the VMT for use in modeling.

Difficulties and Sensitivity to Emissions

Running exhaust emissions and evaporative hydrocarbon emissions calculated in MOVES are directly proportional to the VMT input to the model. In addition to translation of raw VMT from MOBILE6 to MOVES format, users must also be careful to properly allocate VMT across various speed, age, and road type profiles to ensure that calculated emissions are truly representative.

In the case of VMT formats used in this study, the travel model-based VMT process generally provides a more detailed VMT basis, but it also requires a greater degree of data manipulation and processing on the part of the user. Use of HPMS-based VMT, meanwhile, requires less upfront data processing, but does require a separate MOVES model run, as described in Section 2.1, to arrive at a default source type distribution required for use in EPA's VMT converter tool. The use of HPMS based VMT also necessitates the independent development of road type distributions appropriate to the modeled area of interest.

Further, the VMT converter tools provided by EPA, while effective in calculating inputs for the MOVES model, are prone to potential user error due to their complexity. Such user errors, if unchecked, can cascade throughout the created model inputs files.

Solution

To ensure that VMT is appropriately developed for input to MOVES, we recommend that users take advantage, to the extent possible, of any existing MOBILE6 files (such as age distributions, speed distributions, VMT by hour, and so forth) during VMT pre-processing. Any software developed by users to process VMT and its associated distributions should be extensively quality checked to ensure that VMT transformations are being applied correctly.

Users should also make themselves familiar with the wide variety of converter tools that EPA has developed and made available. Our methodology for using these tools on both the TDM and HPMS VMT basis is discussed above in Section 2.2.

Vehicle / Source Type Characterization

The MOVES model has been built from the ground up to utilize emission factors in units of grams per hour of operation. This is a distinct difference from the grams per mile basis used in MOBILE6. In addition, the MOVES model produces emission estimates for emissions processes that could not be accurately produced by the MOBILE6 model, such as extended idling emissions. In the development of MOVES, EPA transitioned away from the standard MOBILE6 vehicle classes (based on gross vehicle weight rating, or GVWR) and instead characterizes vehicles by source type based on their expected mode of operation. However, the emission factors contained within the model are still primarily aggregated on a vehicle class/weight basis.

This requires the MOVES model to map the source types to vehicle classes internally in what is called the Source Bin Generator.

Difficulties and Sensitivity to Emissions

This change in calculation basis presents challenges to users on a number of fronts. The first is proper conversion of VMT and associated distributions. Fortunately, EPA has provided tools and documentation to assist users in transition from MOBILE6 vehicle types to MOVES source types for total VMT, speed distribution, age distribution, and vehicle populations. The second challenge this transition presents to users comes in the form of development of appropriate I/M program inputs. This is discussed in further detail in the next subsection.

The third challenge manifests itself in comparison of model outputs between MOBILE6 and MOVES. In particular, vehicle types HDDV2B through HDDV5 inclusive (along with their gasoline counterparts), considered heavy-duty in MOBILE6, map to MOVES source types 31 (passenger trucks) and 32 (light commercial trucks) in EPA's converter tools and associated guidance. These source types are often considered "light-duty" when analyzing aggregated MOVES outputs. Because of this, difficulties arise when attempting to directly compare MOBILE6 outputs by vehicle type with MOVES outputs by source type.

An example of such a difficulty in presented in Section 5.2, where a first glance at VMT output from the models indicates a disparity between light-duty and heavy duty vehicle activity. This disparity turns out to be a result of the vehicle classification scheme, and not necessarily indicative of any calculation errors in the model.

Solution

Because the vehicle/source type characterization issue is present on a number of fronts when transitioning from MOBILE6 to MOVES, users will do well to keep it in mind at all points of the process: in preparing and converting model inputs, in model execution, and in comparison and analysis of model outputs. Proper use of EPA's provided converter tools, as well as the methodology for model inputs development presented in EPA's *Technical Guidance*, will be helpful in developing VMT by source type.

Inspection/Maintenance Program Inputs

If users elect to model areas affected by local Inspection and Maintenance (I/M) programs, they need to take care to ensure that not only is the I/M representative of the area being modeled, but also that inputs are formatted properly, and conversions from MOBILE6

vehicle to MOVES source types, as alluded to above, are applied in the correct manner (if appropriate).

Difficulties and Sensitivity to Emissions

I/M program information input to the model will reduce calculated model emissions by varying degrees, depending on the type of program implemented, model year coverage, and other factors. If users elect to utilize MOVES I/M defaults for the area of interest, they should first be aware that not all such defaults are accurate, or even present at all, in the model. At the very least, users should carefully examine the defaults and make changes to the I/M program as appropriate.

Secondly, as mentioned above, one of the challenges of applying I/M programs in MOVES is that MOBILE6 vehicle types do not map precisely with MOVES source types. In particular, MOVES source types 31 and 32 can encompass MOBILE6 source types LDGT1 all the way up to HDGV5. As stated in Section 3.10.6 of the *Technical Guidance*, "Inspection and Maintenance (I/M) programs entered in MOVES can only be applied to source types. However, as discussed in section 3.10.2, this association of I/M programs and source type may be inconsistent with state I/M program regulations that define I/M programs by the vehicle weight classes. MOVES source types are composed of several vehicle weight classes and, therefore, applying I/M benefits to the entire MOVES source type may be inappropriate." Users should be aware that they may run into similar difficulties when trying to apply existing I/M programs information across source types in MOVES.

Solution

When making changes to an existing I/M program, users need to be aware that this is a tricky process in which errors can easily be introduced. In particular, it is critical to change the useIMyn field to N for existing records in the IM table, and alter the IMProgramID field for any new or updated records. ERG's methodology for preparation of I/M inputs was discussed previously in Section 2.3.

With respect to proper application of I/M programs across MOVES source types, EPA recommends in section 3.10.6 of the *Technical Guidance* the calculation of a compliance factor based not only on compliance rate and waiver rate (which both provided in MOBILE6 inputs), but also on regulatory class coverage. Calculating the regulatory class coverage is now fairly straightforward, as the information in Table A.3 of the April 2010 *Technical Guidance* Appendix (Gasoline I/M Regulatory Coverage Adjustments) provides the proper conversion factors, along with example calculations.

Vehicle Population Data Selection

There are a couple of methods for obtaining vehicle population data for input to MOVES, which is used in calculation of vehicle start and extended idle emission components in the model. We ultimately used by-county registration data provided by the Texas Department of Transportation, but if such data is not available, users can go through the process of developing populations surrogates based on VMT, as described in detail in section 2.3 of this report, as well as the EPA *Technical Guidance*.

Difficulties and Sensitivity to Emissions

Vehicle start emissions and extended idle emissions calculated in MOVES are directly proportional to the vehicle population input to the model. Although usage of registration data to develop population is suggested by EPA in the *Technical Guidance*, users should understand that the vehicles registered in a county for a given point in time do not necessarily correspond to the VMT driven over that same period in the county. Using the counties we modeled as an example, commuters living in Fort Bend county may drive a significant portion of their vehicle miles in Harris county. In this case, using registration data as a population surrogate may lead to overestimation of start and evaporative emissions in Fort Bend county, while underestimating those same emissions in Harris County.

<u>Solution</u>

While a better alternative for determining representative source populations does not currently exist, this is an important issue for users to be aware of. Ultimately, users must be confident that whatever population data they choose to input to the model is accurate.

MOVES Bugs and Errata

For this study, ERG used the first non-draft version of the MOVES model (MOVES2010) released by EPA in late December 2009. The EPA has released subsequent versions of the model since that time, and will continue to update and improve the model going forward into the future. However, in the course of their modeling efforts, users may, like we did, discover discrepancies in model outputs that only be explained by problems in MOVES.

While using MOVES2010, ERG found two bugs in model calculations during the course of this study, both mentioned previously in Section 2.3. One of these bugs was related to fuel type IDs and associated oxygenate volume percentages. The other bug we found has been documented in the latest version of the MOVES Errata, and involved user creation of new fuel

formulation IDs for input to MOVES. When a user creates and imports new fuel formulation IDs, MOVES does not currently "zero out" the market share of existing fuel formulation IDs.

Difficulties and Sensitivity to Emissions

It is difficult to speculate on how general calculation errors in the model might effect emissions output. In fact, some bugs that users come across may not have an effect on emissions at all, but rather relate to user interface difficulties, Java execution errors, or other issues. In our case, the first bug we found (related to fuel type IDs) led to underestimation of VOC emissions, underestimating them by approximately an order of magnitude³⁰ The second bug we encountered, involving user creation of fuel formulation IDs, led to a pollutant overestimation of approximately two to four times in model calculations.

Solution

Careful examination of outputs in each case led us to contact EPA staff, who provided us with temporary workarounds for each bug while adjustments were made to the model itself. Other potential issues are explained in the currently available version of the MOVES Errata³¹. Users should carefully examine these Errata before performing a MOVES analysis, and be ready to report to EPA any potential issues identified in their own outputs for correction in future versions of the model.

6.2 Study Questions

In this section we attempt to answer the questions originally proposed in the Work Plan submitted at the beginning of this study. These questions included the following:

What is the best approach for creating an emissions inventory with MOVES based on activity data obtained from a travel demand model (TDM)?

We believe the best approach for developing a MOVES emissions inventory using TDM activity data, as described in detail in Sections 2 and 3, involves a number of steps. First, methodical preparation of TDM VMT data, consistent with EPA's *Technical Guidance*, must be undertaken, in which VMT, VHT, and associate activity distributions are derived with an eye on inputs to EPA's multiple Converter Tools. Second, these Converter Tools must be properly utilized to arrive at inputs that can directly input into the MOVES County Data Importer itself.

³⁰ MOVES tables of interest related to this bug include etohbin and fuelsubtypeID.

³¹ MOVES 2010 Errata/Information Sheet, May 2010, EPA-420-B-10-026. Available at http://www.epa.gov/otaq/models/moves/index.htm

Third, analysis and processing of other MOVES inputs, including vehicle populations, I/M program data, fuel characterization, and meteorological data should be appropriately developed. Fourth, execution of MOVES with appropriate model options is required. Fifth, care must be taken in processing of model output, whether using the MOVES GUI or external SQL queries, to ensure emissions summaries are representative. Finally, at all stages of the modeling process, effective QC and QA procedures should be developed to minimize errors and ensure accurate production of model outputs.

What is the best approach for creating an emissions inventory with MOVES based on activity data obtained from the Highway Performance Monitoring System (HPMS)?

The best approach for developing a MOVES emission inventory based on HPMS activity data is fairly similar to that described above for a TDM activity basis. It differs in that the HPMS VMT data requires a different type of pre-processing prior to integration with EPA's Converter Tools; all other modeling steps are the same. Effective pre-processing of HPMS data involves application of default MOVES source type distribution to the data, as described above in Section 2.1. It also necessitates the development of road type distributions outside of the EPA Converter Tools.

What will be the likely impacts on an emission inventory from developing and implementing different drive cycles derived from real world testing data within MOVES?

In this study, the effects of implementing drive cycles in MOVES, based on real world testing data collected in Kansas City, varied considerably depending on which county was being modeled. The drive cycles we developed were based on largely urban driving data as discussed in Section 4, and applying these drive cycles to more rural counties in the Houston-Galveston area (as exhibited by fewer VMT driven in those counties) produced emissions that may not be representative. On the other hand, emissions from Harris County, the most urban of the counties modeled (with the corresponding largest daily VMT modeled), did not vary much at all. We believe that any alternate drive cycles developed and used in MOVES should closely match the type of driving activity for the area being modeled for emissions to be considered representative.

Apart from the impact of altering the drive cycles themselves, it is worthwhile to note that the effort required to produce representative drive cycle based on real world driving data is substantial, and may be prohibitive for some users. For this reason, we anticipate that most users will elect to use the default drive cycles provided as part of MOVES for their analyses.

What will be the likely impacts on an emission inventory after conversion from a MOBILE6 basis to a MOVES basis?

As presented in Section 5, this study shows that users can expect a considerable increase in modeled NOx emissions when transitioning from MOBILE6 to MOVES. This is consistent with other known comparisons of modeled MOBILE6 and MOVES results.³²³³ Our study also shows smaller increases of both CO and VOC when transitioning from MOBILE6 to MOVES. Other studies that modeled these pollutants have had mixed results on this point (TTI modeled decreased CO and increase VOC, while EPA has found decreased VOC results). Beyond the expected changes in emissions, users should be aware that the level of effort and computing time required to successfully execute and process a MOVES model run relative to MOBILE6 has increased substantially.

 ³² TTI's Production of MOVES On-Road Mobile, Link-Based Emissions Estimates and Document Preparation Technical Note, submitted to TCEQ in July 2010.
 ³³ Update on EPA's Motor Vehicle Emissions Simulator MOVES2010, presented at CRC by J. Koupal in March

³⁵ Update on EPA's Motor Vehicle Emissions Simulator MOVES2010, presented at CRC by J. Koupal in March 2010

Appendix A Electronic Files Submitted In addition to this report, ERG is also providing all of the MOVES input databases, output databases, and runspecs generated for during the course of this study. We have also included the spreadsheet Converter Tools we used in developing model inputs, the XML import specifications used to populate the County Data Manager input databases, as well as the batch files used to process both the XML importer files and the MOVES runspecs themselves.

The input and output databases provided were copied directly from the C:\MySQL\data directory on ERG's MOVES server. These databases consist of several MySQL database files with a variety of extensions (.MYI, .MYD, .FRM, and .OPT files). Each input and output database is contained in its own subfolder. The nomenclature used for the MOVES files followed a convention of dot_*county*06_*activitytype*vmt_*extension*, with possible variations as follows:

- *County*: county name
- Activity type: either TTI (referring to TDM-based VMT) or HPMS
- *Extension*: *.run* for runspec files, *_in* for an input database directory, and *_out* for an output database directory.

Please refer to Table 2-10 in Section 2.4 of this report for a listing of Converter Tool spreadsheets associated with inputs provided to the MOVES county data manager.

In addition to the above, we are providing spreadsheets (*KCupdateddriveschedule.xls*, *KCupdateddrivescheduleassoc.xls*, and *KCupdateddriveschedulesecond.*xls) containing our modified drive cycles based on our previous Kansas City project. We have also provided text files, based on the spreadsheets listed above, used to import drive cycles directly into MOVES. These include *LoadSchedTables.sql*, a simple SQL script used to manually load the drive cycles, *KCdriveschedules1 20100611 1036.sql*, a SQL Administrator backup script that can be used to REPLACE the default drive cycles in MOVES with our Kansas City based cycles, and *backup_original_driveschedule_tables 20100607 0959.sql*, a SQL Administrator backup script that can be used to RESTORE the default drive cycles in MOVES to their original state.

Appendix B Additional Drive Cycle Development Documentation

Figure B-1a. Square of the Length of T-C as Micro-Trips Are Added: Restricted 0-20 MPH Bin

/proj1/DOT_MOVES/DriveCycle/cyclestats.sas 06JUL10 01:05

Figure B-1b. Square of the Length of T-C as Micro-Trips Are Added: Restricted 20-30 MPH Bin

Figure B-1c. Square of the Length of T-C as Micro-Trips Are Added: Restricted 30-40 MPH Bin

Figure B-1d. Square of the Length of T-C as Micro-Trips Are Added: Restricted 40-50 MPH Bin

Figure B-1e. Square of the Length of T-C as Micro-Trips Are Added: Restricted 50-60 MPH Bin

Figure B-1f. Square of the Length of T-C as Micro-Trips Are Added: Restricted 60+ MPH Bin

Figure B-1g. Square of the Length of T-C as Micro-Trips Are Added: Unrestricted 0-15 MPH Bin

Figure B-1h. Square of the Length of T-C as Micro-Trips Are Added: Unrestricted 15-20 MPH Bin

Figure B-1i. Square of the Length of T-C as Micro-Trips Are Added: Unrestricted 20-25 MPH Bin

/proj1/DOT_MOVES/DriveCycle/cyclestats.sas 06JUL10 01:05

Figure B-1j. Square of the Length of T-C as Micro-Trips Are Added: Unrestricted 25-28 MPH Bin

Figure B-1k. Square of the Length of T-C as Micro-Trips Are Added: Unrestricted 28-32 MPH Bin

Figure B-1I. Square of the Length of T-C as Micro-Trips Are Added: Unrestricted 32+ MPH Bin

Figure B-2a. Speed Versus Time: Restricted 0-20 MPH

Figure B-2b. Speed versus Time: Restricted 20-30 MPH

Figure B-2c. Speed versus Time: Restricted 30-40 MPH

Figure B-2d. Speed versus Time: Restricted 40-50 MPH

/proj1/DOT_MOVES/DriveCycle/cyclestats.sas 06JUL10 00:34

/proj1/DOT_MOVES/DriveOycle/cyclestats.sas 06JUL10 00:34

Figure B-2g. Speed Versus Time: Unrestricted 0-15 MPH

Figure B-2h. Speed versus Time: Unrestricted 15-20 MPH

Figure B-2i. Speed versus Time: Unrestricted 20-25 MPH

/proj1/DOT_MOVES/DriveCycle/cyclestats.sas 06JUL10 00:34

Figure B-2j. Speed versus Time: Unrestricted 25-28 MPH

Figure B-2k. Speed versus Time: Unrestricted 28-32 MPH

Figure B-2I. Speed versus Time: Unrestricted 32+ MPH

Figure B-3a. Acceleration versus Speed for Cycle: Restricted 50-60 MPH

/proj1/DOT_MOVES/DriveOycle/cyclestats.sas 06JUL10 00:34

Figure B-3b. Acceleration versus Speed for Target: Restricted 50-60 MPH

Figure B-3c. Acceleration versus Speed for Cycle: Unrestricted 25-28 MPH

Figure B-3d. Acceleration versus Speed for Target: Unrestricted 25-28 MPH

/proj1/DOT_MOVES/DriveCycle/cyclestats.sas 06JUL10 00:34

Figure B-4a. Frequency Distribution of Speeds in Cycle: Restricted 50-60 MPH

Figure B-4b. Frequency Distribution of Speeds in Target: Restricted 50-60 MPH

/proj1/DOT_MOVES/DriveCycle/cyclestats.sas 06JUL10 00:34

Figure B-4c. Frequency Distribution of Speeds in Cycle: Unrestricted 25-28 MPH

/proj1/DOT_MOVES/DriveCycle/cyclestats.sas 06JUL10 00:34

		FREQUENCY				
		0 10000 20000 300	00			
	80		0	100009	0.00	100.00
	/8		g	165059	0.00	100.00
	76		2	165051	0.00	100.00
	74		2	165051	0.00	100.00
	72		0	165049	0.00	99,99
	70		0	165049	0.00	99.99
	68		0	165049	0.00	99.99
	66		11	165049	0.01	99.99
	64		12	165038	0.01	99.99
	62		11	165026	0.01	99.98
	60		23	165015	0.01	99.97
	58		7	164992	0.00	99.96
	56		5	164985	0.00	99.96
	54		16	164980	0.01	99.95
	52	1	65	164964	0.04	99.94
m	50	1	115	164899	0.07	99.90
E	48		304	164784	0.18	99.83
ě	46		499	164480	0.30	99.65
σ	44		1346	163981	0.82	99.35
ഗ്	42		2306	162635	1.40	98.53
ě	40		3899	160329	2.36	97.13
õ	38		6908	156430	4.19	94.77
~	36		11527	149522	6.98	90.59
5	34		16412	137995	9.94	83.60
<u>a</u>	32		21314	121583	12.91	73.66
£	30		20740	100269	12.57	60.75
	28		14869	79529	9.01	48.18
	24		10394	64660	6.30	39.17
	22		8020	54266	4.42	32.88
	20		7201	46246	4 42	23.00
	18		4590	32788	2.78	19.86
	16		3887	28198	2.35	17.08
	14		3506	24311	2.12	14.73
	12		3149	20805	1.91	12.60
	10		2942	17656	1.78	10.70
	8		2809	14714	1.70	8.91
	6		3115	11905	1.89	7.21
	4		2900	8790	1.76	5.33
	2		2798	5890	1.70	3.57
	0		3092	3092	1.87	1.87
			FREQ.	FREQ.	PCT.	PCT.
				CUM		CUM

Figure B-4d. Frequency Distribution of Speeds in Target: Unrestricted 25-28 MPH

/proj1/DOT_MOVES/DriveOycle/cyclestats.sas 06JUL10 00:34

Appendix C MOVES Model Output Summaries, by County

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				3.0327	31.6563	34.6889	34.6889
	Start Exh	0.1627	12.0460	12.2086				12.2086
	Crank Run Exh				0.0054	0.0049	0.0103	0.0103
	Crank Start Exh	0.0001	0.0015	0.0016				0.0016
	Crank Ext Idle	0.0004		0.0004				0.0004
	Ext Idle Exh	0.1407		0.1407				0.1407
CO Total		0.3039	12.0475	12.3513	3.0380	31.6612	34.6992	47.0505
NOx	Running Exh				6.1609	5.0665	11.2274	11.2274
	Start Exh	0.0044	1.3320	1.3364				1.3364
	Crank Run Exh				0.0030	0.0003	0.0033	0.0033
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.2849		0.2849				0.2849
NOx Total		0.2895	1.3320	1.6215	6.1639	5.0668	11.2307	12.8522
VOC	Running Exh				0.3746	1.1361	1.5107	1.5107
	Start Exh	0.0052	1.4194	1.4246				1.4246
	Evap Permeation				0.0010	0.3280	0.3290	0.3290
	Evap Fuel Vent				0.0056	0.8101	0.8157	0.8157
	Evap Fuel Leak				0.0010	0.1464	0.1474	0.1474
	Crank Run Exh				0.0072	0.0150	0.0222	0.0222
	Crank start Exh	0.0001	0.0187	0.0188				0.0188
	Crank Ext Idle	0.0019		0.0019				0.0019
	Refuel Disp Vap	0.0008	0.0199	0.0207				0.0207
	Refuel Spillage	0.0134	0.0289	0.0423				0.0423
	Ext Idle Exh	0.0940		0.0940				0.0940
VOC Total		0.1153	1.4870	1.6023	0.3894	2.4355	2.8249	4.4272

Table C-1. Brazoria County HPMS Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				1.9486	31.7531	33.7017	33.7017
	Start Exh	0.1627	12.0460	12.2086				12.2086
	Crank Run Exh				0.0040	0.0050	0.0089	0.0089
	Crank Start Exh	0.0001	0.0015	0.0016				0.0016
	Crank Ext Idle	0.0003		0.0003				0.0003
	Ext Idle Exh	0.1107		0.1107				0.1107
CO Total		0.2738	12.0475	12.3212	1.9525	31.7581	33.7106	46.0318
NOx	Running Exh				4.7143	5.1791	9.8934	9.8934
	Start Exh	0.0044	1.3320	1.3364				1.3364
	Crank Run Exh				0.0023	0.0003	0.0027	0.0027
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.2241		0.2241				0.2241
NOx Total		0.2287	1.3320	1.5607	4.7166	5.1795	9.8961	11.4568
VOC	Running Exh				0.2580	1.1059	1.3639	1.3639
	Start Exh	0.0052	1.4194	1.4246				1.4246
	Evap Permeation				0.0009	0.3277	0.3286	0.3286
	Evap Fuel Vent				0.0039	0.7924	0.7963	0.7963
	Evap Fuel Leak				0.0008	0.1453	0.1461	0.1461
	Crank Run Exh				0.0050	0.0150	0.0200	0.0200
	Crank start Exh	0.0001	0.0187	0.0188				0.0188
	Crank Ext Idle	0.0015		0.0015				0.0015
	Refuel Disp Vap	0.0004	0.0201	0.0204				0.0204
	Refuel Spillage	0.0101	0.0290	0.0391				0.0391
	Ext Idle Exh	0.0739		0.0739				0.0739
VOC Total		0.0911	1.4872	1.5783	0.2686	2.3863	2.6549	4.2333

Table C-2. Brazoria County TDM Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				3.0327	27.4230	30.4557	30.4557
	Start Exh	0.1627	12.0460	12.2086				12.2086
	Crank Run Exh				0.0054	0.0044	0.0098	0.0098
	Crank Start Exh	0.0001	0.0015	0.0016				0.0016
	Crank Ext Idle	0.0004		0.0004				0.0004
	Ext Idle Exh	0.1407		0.1407				0.1407
CO Total		0.3039	12.0475	12.3513	3.0380	27.4274	30.4654	42.8167
NOx	Running Exh				6.1609	4.4819	10.6428	10.6428
	Start Exh	0.0044	1.3320	1.3364				1.3364
	Crank Run Exh				0.0030	0.0003	0.0033	0.0033
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.2849		0.2849				0.2849
NOx Total		0.2895	1.3320	1.6215	6.1639	4.4822	10.6461	12.2676
VOC	Running Exh				0.3746	1.0323	1.4068	1.4068
	Start Exh	0.0052	1.4194	1.4246				1.4246
	Evap Permeation				0.0010	0.3280	0.3290	0.3290
	Evap Fuel Vent				0.0056	0.8101	0.8157	0.8157
	Evap Fuel Leak				0.0010	0.1464	0.1474	0.1474
	Crank Run Exh				0.0072	0.0136	0.0208	0.0208
	Crank start Exh	0.0001	0.0187	0.0188				0.0188
	Crank Ext Idle	0.0019		0.0019				0.0019
	Refuel Disp Vap	0.0008	0.0170	0.0178				0.0178
	Refuel Spillage	0.0134	0.0247	0.0381				0.0381
	Ext Idle Exh	0.0940		0.0940				0.0940
VOC Total		0.1153	1.4799	1.5952	0.3894	2.3303	2.7197	4.3149

Table C-3. Brazoria County HPMS Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				1.9486	27.8638	29.8123	29.8123
	Start Exh	0.1627	12.0460	12.2086				12.2086
	Crank Run Exh				0.0040	0.0045	0.0085	0.0085
	Crank Start Exh	0.0001	0.0015	0.0016				0.0016
	Crank Ext Idle	0.0003		0.0003				0.0003
	Ext Idle Exh	0.1107		0.1107				0.1107
CO Total		0.2738	12.0475	12.3212	1.9525	27.8682	29.8208	42.1420
NOx	Running Exh				4.7143	4.5778	9.2922	9.2922
	Start Exh	0.0044	1.3320	1.3364				1.3364
	Crank Run Exh				0.0023	0.0003	0.0027	0.0027
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.2241		0.2241				0.2241
NOx Total		0.2287	1.3320	1.5607	4.7166	4.5782	9.2948	10.8555
VOC	Running Exh				0.2580	1.0092	1.2672	1.2672
	Start Exh	0.0052	1.4194	1.4246				1.4246
	Evap Permeation				0.0009	0.3277	0.3286	0.3286
	Evap Fuel Vent				0.0039	0.7924	0.7963	0.7963
	Evap Fuel Leak				0.0008	0.1453	0.1461	0.1461
	Crank Run Exh				0.0050	0.0137	0.0187	0.0187
	Crank start Exh	0.0001	0.0187	0.0188				0.0188
	Crank Ext Idle	0.0015		0.0015				0.0015
	Refuel Disp Vap	0.0004	0.0172	0.0176				0.0176
	Refuel Spillage	0.0101	0.0249	0.0350				0.0350
	Ext Idle Exh	0.0739		0.0739				0.0739
VOC Total		0.0911	1.4803	1.5714	0.2686	2.2883	2.5569	4.1284

Table C-4. Brazoria County TDM Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				1.1945	18.8060	20.0005	20.0005
	Start Exh	0.0268	1.0607	1.0875				1.0875
	Crank Run Exh				0.0019	0.0028	0.0048	0.0048
	Crank Start Exh	0.0000	0.0001	0.0001				0.0001
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.0301		0.0301				0.0301
CO Total		0.0571	1.0608	1.1179	1.1964	18.8088	20.0053	21.1232
NOx	Running Exh				2.5793	2.6302	5.2095	5.2095
	Start Exh	0.0007	0.1186	0.1193				0.1193
	Crank Run Exh				0.0013	0.0002	0.0014	0.0014
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0000		0.0000				0.0000
	Ext Idle Exh	0.0592		0.0592				0.0592
NOx Total		0.0599	0.1186	0.1785	2.5805	2.6304	5.2110	5.3895
VOC	Running Exh				0.1302	0.5049	0.6351	0.6351
	Start Exh	0.0008	0.1294	0.1303				0.1303
	Evap Permeation				0.0002	0.0363	0.0365	0.0365
	Evap Fuel Vent				0.0013	0.1567	0.1581	0.1581
	Evap Fuel Leak				0.0002	0.0242	0.0244	0.0244
	Crank Run Exh				0.0025	0.0067	0.0092	0.0092
	Crank start Exh	0.0000	0.0017	0.0017				0.0017
	Crank Ext Idle	0.0004		0.0004				0.0004
	Refuel Disp Vap	0.0004	0.0089	0.0092				0.0092
	Refuel Spillage	0.0055	0.0124	0.0179				0.0179
	Ext Idle Exh	0.0201		0.0201				0.0201
VOC Total		0.0273	0.1524	0.1797	0.1345	0.7289	0.8633	1.0430

Table C-5. Chambers County HPMS Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				0.6722	16.1114	16.7835	16.7835
	Start Exh	0.0268	1.0607	1.0875				1.0875
	Crank Run Exh				0.0014	0.0025	0.0039	0.0039
	Crank Start Exh	0.0000	0.0001	0.0001				0.0001
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.0244		0.0244				0.0244
CO Total		0.0513	1.0608	1.1121	0.6736	16.1139	16.7875	17.8996
NOx	Running Exh				1.9529	2.5171	4.4700	4.4700
	Start Exh	0.0007	0.1186	0.1193				0.1193
	Crank Run Exh				0.0010	0.0002	0.0011	0.0011
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0000		0.0000				0.0000
	Ext Idle Exh	0.0478		0.0478				0.0478
NOx Total		0.0486	0.1186	0.1672	1.9538	2.5173	4.4711	4.6383
VOC	Running Exh				0.0888	0.4637	0.5526	0.5526
	Start Exh	0.0008	0.1294	0.1303				0.1303
	Evap Permeation				0.0002	0.0362	0.0364	0.0364
	Evap Fuel Vent				0.0007	0.1541	0.1549	0.1549
	Evap Fuel Leak				0.0002	0.0241	0.0243	0.0243
	Crank Run Exh				0.0017	0.0063	0.0081	0.0081
	Crank start Exh	0.0000	0.0017	0.0017				0.0017
	Crank Ext Idle	0.0003		0.0003				0.0003
	Refuel Disp Vap	0.0001	0.0085	0.0086				0.0086
	Refuel Spillage	0.0041	0.0121	0.0162				0.0162
	Ext Idle Exh	0.0163		0.0163				0.0163
VOC Total		0.0217	0.1517	0.1734	0.0916	0.6846	0.7762	0.9496

Table C-6. Chambers County TDM Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				1.1945	17.6107	18.8051	18.8051
	Start Exh	0.0268	1.0607	1.0875				1.0875
	Crank Run Exh				0.0019	0.0027	0.0046	0.0046
	Crank Start Exh	0.0000	0.0001	0.0001				0.0001
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.0301		0.0301				0.0301
CO Total		0.0571	1.0608	1.1179	1.1964	17.6133	18.8097	19.9276
NOx	Running Exh				2.5793	2.4222	5.0015	5.0015
	Start Exh	0.0007	0.1186	0.1193				0.1193
	Crank Run Exh				0.0013	0.0002	0.0014	0.0014
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0000		0.0000				0.0000
	Ext Idle Exh	0.0592		0.0592				0.0592
NOx Total		0.0599	0.1186	0.1785	2.5805	2.4224	5.0029	5.1814
VOC	Running Exh				0.1302	0.4753	0.6055	0.6055
	Start Exh	0.0008	0.1294	0.1303				0.1303
	Evap Permeation				0.0002	0.0363	0.0365	0.0365
	Evap Fuel Vent				0.0013	0.1567	0.1581	0.1581
	Evap Fuel Leak				0.0002	0.0242	0.0244	0.0244
	Crank Run Exh				0.0025	0.0063	0.0089	0.0089
	Crank start Exh	0.0000	0.0017	0.0017				0.0017
	Crank Ext Idle	0.0004		0.0004				0.0004
	Refuel Disp Vap	0.0004	0.0078	0.0082				0.0082
	Refuel Spillage	0.0055	0.0109	0.0165				0.0165
	Ext Idle Exh	0.0201		0.0201				0.0201
VOC Total		0.0273	0.1498	0.1771	0.1345	0.6989	0.8334	1.0105

Table C-7. Chambers County HPMS Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				0.6722	15.1140	15.7861	15.7861
	Start Exh	0.0268	1.0607	1.0875				1.0875
	Crank Run Exh				0.0014	0.0024	0.0038	0.0038
	Crank Start Exh	0.0000	0.0001	0.0001				0.0001
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.0244		0.0244				0.0244
CO Total		0.0513	1.0608	1.1121	0.6736	15.1163	15.7899	16.9020
NOx	Running Exh				1.9529	2.3176	4.2705	4.2705
	Start Exh	0.0007	0.1186	0.1193				0.1193
	Crank Run Exh				0.0010	0.0002	0.0011	0.0011
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0000		0.0000				0.0000
	Ext Idle Exh	0.0478		0.0478				0.0478
NOx Total		0.0486	0.1186	0.1672	1.9538	2.3178	4.2716	4.4388
VOC	Running Exh				0.0888	0.4369	0.5257	0.5257
	Start Exh	0.0008	0.1294	0.1303				0.1303
	Evap Permeation				0.0002	0.0362	0.0364	0.0364
	Evap Fuel Vent				0.0007	0.1541	0.1549	0.1549
	Evap Fuel Leak				0.0002	0.0241	0.0243	0.0243
	Crank Run Exh				0.0017	0.0059	0.0077	0.0077
	Crank start Exh	0.0000	0.0017	0.0017				0.0017
	Crank Ext Idle	0.0003		0.0003				0.0003
	Refuel Disp Vap	0.0001	0.0075	0.0076				0.0076
	Refuel Spillage	0.0041	0.0106	0.0147				0.0147
	Ext Idle Exh	0.0163		0.0163				0.0163
VOC Total		0.0217	0.1492	0.1709	0.0916	0.6574	0.7490	0.9199

Table C-8. Chambers County TDM Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				4.6452	43.6857	48.3309	48.3309
	Start Exh	0.3675	15.2793	15.6469				15.6469
	Crank Run Exh				0.0081	0.0067	0.0148	0.0148
	Crank Start Exh	0.0002	0.0019	0.0020				0.0020
	Crank Ext Idle	0.0007		0.0007				0.0007
	Ext Idle Exh	0.2392		0.2392				0.2392
CO Total		0.6076	15.2812	15.8889	4.6533	43.6924	48.3458	64.2346
NOx	Running Exh				9.1965	6.7569	15.9534	15.9534
	Start Exh	0.0103	1.7253	1.7356				1.7356
	Crank Run Exh				0.0045	0.0005	0.0049	0.0049
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0002		0.0002				0.0002
	Ext Idle Exh	0.4770		0.4770				0.4770
NOx Total		0.4876	1.7253	2.2129	9.2010	6.7574	15.9584	18.1713
VOC	Running Exh				0.5650	1.4899	2.0549	2.0549
	Start Exh	0.0120	1.7790	1.7911				1.7911
	Evap Permeation				0.0020	0.3965	0.3984	0.3984
	Evap Fuel Vent				0.0098	1.0856	1.0955	1.0955
	Evap Fuel Leak				0.0016	0.1843	0.1859	0.1859
	Crank Run Exh				0.0108	0.0196	0.0304	0.0304
	Crank start Exh	0.0002	0.0235	0.0236				0.0236
	Crank Ext Idle	0.0032		0.0032				0.0032
	Refuel Disp Vap	0.0012	0.0277	0.0289				0.0289
	Refuel Spillage	0.0202	0.0416	0.0619				0.0619
	Ext Idle Exh	0.1598		0.1598				0.1598
VOC Total		0.1967	1.8718	2.0685	0.5893	3.1758	3.7651	5.8336

Table C-9. Fort Bend County HPMS Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				2.9659	42.5394	45.5053	45.5053
	Start Exh	0.3675	15.2793	15.6469				15.6469
	Crank Run Exh				0.0060	0.0066	0.0126	0.0126
	Crank Start Exh	0.0002	0.0019	0.0020				0.0020
	Crank Ext Idle	0.0006		0.0006				0.0006
	Ext Idle Exh	0.1898		0.1898				0.1898
CO Total		0.5581	15.2812	15.8393	2.9719	42.5460	45.5179	61.3572
NOx	Running Exh				6.9567	6.6706	13.6273	13.6273
	Start Exh	0.0103	1.7253	1.7356				1.7356
	Crank Run Exh				0.0034	0.0005	0.0039	0.0039
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0002		0.0002				0.0002
	Ext Idle Exh	0.3785		0.3785				0.3785
NOx Total		0.3890	1.7253	2.1143	6.9601	6.6711	13.6312	15.7455
VOC	Running Exh				0.3881	1.4121	1.8002	1.8002
	Start Exh	0.0120	1.7790	1.7911				1.7911
	Evap Permeation				0.0019	0.3960	0.3978	0.3978
	Evap Fuel Vent				0.0073	1.0507	1.0579	1.0579
	Evap Fuel Leak				0.0013	0.1815	0.1828	0.1828
	Crank Run Exh				0.0075	0.0191	0.0266	0.0266
	Crank start Exh	0.0002	0.0235	0.0236				0.0236
	Crank Ext Idle	0.0025		0.0025				0.0025
	Refuel Disp Vap	0.0006	0.0269	0.0275				0.0275
	Refuel Spillage	0.0151	0.0404	0.0556				0.0556
	Ext Idle Exh	0.1268		0.1268				0.1268
VOC Total		0.1573	1.8699	2.0271	0.4061	3.0594	3.4654	5.4926

Table C-10. Fort Bend County TDM Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				4.6452	40.4402	45.0854	45.0854
	Start Exh	0.3675	15.2793	15.6469				15.6469
	Crank Run Exh				0.0081	0.0063	0.0145	0.0145
	Crank Start Exh	0.0002	0.0019	0.0020				0.0020
	Crank Ext Idle	0.0007		0.0007				0.0007
	Ext Idle Exh	0.2392		0.2392				0.2392
CO Total		0.6076	15.2812	15.8889	4.6533	40.4465	45.0999	60.9887
NOx	Running Exh				9.1965	6.3820	15.5785	15.5785
	Start Exh	0.0103	1.7253	1.7356				1.7356
	Crank Run Exh				0.0045	0.0005	0.0049	0.0049
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0002		0.0002				0.0002
	Ext Idle Exh	0.4770		0.4770				0.4770
NOx Total		0.4876	1.7253	2.2129	9.2010	6.3825	15.5835	17.7964
VOC	Running Exh				0.5650	1.3933	1.9582	1.9582
	Start Exh	0.0120	1.7790	1.7911				1.7911
	Evap Permeation				0.0020	0.3965	0.3984	0.3984
	Evap Fuel Vent				0.0098	1.0856	1.0955	1.0955
	Evap Fuel Leak				0.0016	0.1843	0.1859	0.1859
	Crank Run Exh				0.0108	0.0183	0.0291	0.0291
	Crank start Exh	0.0002	0.0235	0.0236				0.0236
	Crank Ext Idle	0.0032		0.0032				0.0032
	Refuel Disp Vap	0.0012	0.0250	0.0263				0.0263
	Refuel Spillage	0.0202	0.0377	0.0579				0.0579
	Ext Idle Exh	0.1598		0.1598				0.1598
VOC Total		0.1967	1.8652	2.0619	0.5893	3.0779	3.6672	5.7291

Table C-11. Fort Bend County HPMS Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Network		Off	On Network		On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				2.9659	39.6900	42.6559	42.6559
	Start Exh	0.3675	15.2793	15.6469				15.6469
	Crank Run Exh				0.0060	0.0063	0.0123	0.0123
	Crank Start Exh	0.0002	0.0019	0.0020				0.0020
	Crank Ext Idle	0.0006		0.0006				0.0006
	Ext Idle Exh	0.1898		0.1898				0.1898
CO Total		0.5581	15.2812	15.8393	2.9719	39.6963	42.6682	58.5075
NOx	Running Exh				6.9567	6.2642	13.2208	13.2208
	Start Exh	0.0103	1.7253	1.7356				1.7356
	Crank Run Exh				0.0034	0.0005	0.0039	0.0039
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0002		0.0002				0.0002
	Ext Idle Exh	0.3785		0.3785				0.3785
NOx Total		0.3890	1.7253	2.1143	6.9601	6.2646	13.2247	15.3391
VOC	Running Exh				0.3881	1.3234	1.7115	1.7115
	Start Exh	0.0120	1.7790	1.7911				1.7911
	Evap Permeation				0.0019	0.3960	0.3978	0.3978
	Evap Fuel Vent				0.0073	1.0507	1.0579	1.0579
	Evap Fuel Leak				0.0013	0.1815	0.1828	0.1828
	Crank Run Exh				0.0075	0.0179	0.0254	0.0254
	Crank start Exh	0.0002	0.0235	0.0236				0.0236
	Crank Ext Idle	0.0025		0.0025				0.0025
	Refuel Disp Vap	0.0006	0.0245	0.0250				0.0250
	Refuel Spillage	0.0151	0.0367	0.0518				0.0518
	Ext Idle Exh	0.1268		0.1268				0.1268
VOC Total		0.1573	1.8637	2.0209	0.4061	2.9695	3.3755	5.3965

Table C-12. Fort Bend County TDM Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Network		Off	On Network		On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				3.2549	37.8385	41.0934	41.0934
	Start Exh	0.0689	9.8266	9.8954				9.8954
	Crank Run Exh				0.0056	0.0057	0.0113	0.0113
	Crank Start Exh	0.0000	0.0012	0.0012				0.0012
	Crank Ext Idle	0.0005		0.0005				0.0005
	Ext Idle Exh	0.1584		0.1584				0.1584
CO Total		0.2278	9.8278	10.0556	3.2605	37.8442	41.1047	51.1603
NOx	Running Exh				6.4610	5.3531	11.8142	11.8142
	Start Exh	0.0019	1.1204	1.1223				1.1223
	Crank Run Exh				0.0031	0.0004	0.0035	0.0035
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0002		0.0002				0.0002
	Ext Idle Exh	0.3130		0.3130				0.3130
NOx Total		0.3151	1.1204	1.4355	6.4642	5.3535	11.8177	13.2532
VOC	Running Exh				0.3865	1.2201	1.6066	1.6066
	Start Exh	0.0022	1.1954	1.1976				1.1976
	Evap Permeation				0.0005	0.3215	0.3220	0.3220
	Evap Fuel Vent				0.0045	0.7286	0.7331	0.7331
	Evap Fuel Leak				0.0008	0.1429	0.1436	0.1436
	Crank Run Exh				0.0074	0.0161	0.0235	0.0235
	Crank start Exh	0.0000	0.0158	0.0158				0.0158
	Crank Ext Idle	0.0021		0.0021				0.0021
	Refuel Disp Vap	0.0009	0.0214	0.0223				0.0223
	Refuel Spillage	0.0144	0.0306	0.0450				0.0450
	Ext Idle Exh	0.1058		0.1058				0.1058
VOC Total		0.1255	1.2632	1.3887	0.3997	2.4291	2.8289	4.2176

Table C-13. Galveston County HPMS Based Default Cycle Emissions (tons)2006 Ozone Season Weekday
		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
CO	Running Exh				2.0946	35.8933	37.9879	37.9879
	Start Exh	0.0689	9.8266	9.8954				9.8954
	Crank Run Exh				0.0043	0.0056	0.0099	0.0099
	Crank Start Exh	0.0000	0.0012	0.0012				0.0012
	Crank Ext Idle	0.0004		0.0004				0.0004
	Ext Idle Exh	0.1360		0.1360				0.1360
CO Total		0.2053	9.8278	10.0331	2.0989	35.8989	37.9979	48.0309
NOx	Running Exh				4.9229	5.4455	10.3684	10.3684
	Start Exh	0.0019	1.1204	1.1223				1.1223
	Crank Run Exh				0.0024	0.0004	0.0028	0.0028
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.2687		0.2687				0.2687
NOx Total		0.2707	1.1204	1.3912	4.9253	5.4459	10.3712	11.7623
VOC	Running Exh				0.2764	1.2286	1.5050	1.5050
	Start Exh	0.0022	1.1954	1.1976				1.1976
	Evap Permeation				0.0005	0.3218	0.3223	0.3223
	Evap Fuel Vent				0.0028	0.7474	0.7502	0.7502
	Evap Fuel Leak				0.0006	0.1466	0.1472	0.1472
	Crank Run Exh				0.0054	0.0166	0.0220	0.0220
	Crank start Exh	0.0000	0.0158	0.0158				0.0158
	Crank Ext Idle	0.0018		0.0018				0.0018
	Refuel Disp Vap	0.0004	0.0216	0.0220				0.0220
	Refuel Spillage	0.0109	0.0309	0.0419				0.0419
	Ext Idle Exh	0.0909		0.0909				0.0909
VOC Total		0.1062	1.2637	1.3699	0.2856	2.4610	2.7466	4.1165

Table C-14. Galveston County TDM Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				3.2549	36.0785	39.3335	39.3335
	Start Exh	0.0689	9.8266	9.8954				9.8954
	Crank Run Exh				0.0056	0.0055	0.0111	0.0111
	Crank Start Exh	0.0000	0.0012	0.0012				0.0012
	Crank Ext Idle	0.0005		0.0005				0.0005
	Ext Idle Exh	0.1584		0.1584				0.1584
CO Total		0.2278	9.8278	10.0556	3.2605	36.0840	39.3446	49.4002
NOx	Running Exh				6.4610	5.3023	11.7633	11.7633
	Start Exh	0.0019	1.1204	1.1223				1.1223
	Crank Run Exh				0.0031	0.0004	0.0035	0.0035
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0002		0.0002				0.0002
	Ext Idle Exh	0.3130		0.3130				0.3130
NOx Total		0.3151	1.1204	1.4355	6.4642	5.3027	11.7669	13.2024
VOC	Running Exh				0.3865	1.1607	1.5472	1.5472
	Start Exh	0.0022	1.1954	1.1976				1.1976
	Evap Permeation				0.0005	0.3215	0.3220	0.3220
	Evap Fuel Vent				0.0045	0.7286	0.7331	0.7331
	Evap Fuel Leak				0.0008	0.1429	0.1436	0.1436
	Crank Run Exh				0.0074	0.0153	0.0227	0.0227
	Crank start Exh	0.0000	0.0158	0.0158				0.0158
	Crank Ext Idle	0.0021		0.0021				0.0021
	Refuel Disp Vap	0.0009	0.0199	0.0208				0.0208
	Refuel Spillage	0.0144	0.0284	0.0429				0.0429
	Ext Idle Exh	0.1058		0.1058				0.1058
VOC Total		0.1255	1.2595	1.3850	0.3997	2.3690	2.7687	4.1537

Table C-15. Galveston County HPMS Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
~~~	<b>D</b> 1 <b>D</b> 1			Total	2 00 4 6	22.00.40	Total	25.0005
со	Running Exh				2.0946	33.8049	35.8995	35.8995
	Start Exh	0.0689	9.8266	9.8954				9.8954
	Crank Run Exh				0.0043	0.0054	0.0097	0.0097
	Crank Start Exh	0.0000	0.0012	0.0012				0.0012
	Crank Ext Idle	0.0004		0.0004				0.0004
	Ext Idle Exh	0.1360		0.1360				0.1360
CO Total		0.2053	9.8278	10.0331	2.0989	33.8103	35.9092	45.9423
NOx	Running Exh				4.9229	5.2891	10.2119	10.2119
	Start Exh	0.0019	1.1204	1.1223				1.1223
	Crank Run Exh				0.0024	0.0004	0.0028	0.0028
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.2687		0.2687				0.2687
NOx Total		0.2707	1.1204	1.3912	4.9253	5.2895	10.2148	11.6059
VOC	Running Exh				0.2764	1.1588	1.4352	1.4352
	Start Exh	0.0022	1.1954	1.1976				1.1976
	Evap Permeation				0.0005	0.3218	0.3223	0.3223
	Evap Fuel Vent				0.0028	0.7474	0.7502	0.7502
	Evap Fuel Leak				0.0006	0.1466	0.1472	0.1472
	Crank Run Exh				0.0054	0.0157	0.0210	0.0210
	Crank start Exh	0.0000	0.0158	0.0158				0.0158
	Crank Ext Idle	0.0018		0.0018				0.0018
	Refuel Disp Vap	0.0004	0.0200	0.0204				0.0204
	Refuel Spillage	0.0109	0.0286	0.0395				0.0395
	Ext Idle Exh	0.0909		0.0909				0.0909
<b>VOC Total</b>		0.1062	1.2597	1.3659	0.2856	2.3903	2.6759	4.0418

# Table C-16. Galveston County TDM Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network Total	Heavy Duty	Light Duty	Network Total	Total
СО	Running Exh				59.9874	677.8779	737.8653	737.8653
	Start Exh	3.3478	192.0671	195.4148				195.4148
	Crank Run Exh				0.1022	0.1033	0.2056	0.2056
	Crank Start Exh	0.0014	0.0236	0.0250				0.0250
	Crank Ext Idle	0.0078		0.0078				0.0078
	Ext Idle Exh	2.6025		2.6025				2.6025
CO Total		5.9595	192.0906	198.0502	60.0896	677.9812	738.0708	936.1210
NOx	Running Exh				115.9841	97.0662	213.0503	213.0503
	Start Exh	0.0929	22.6053	22.6982				22.6982
	Crank Run Exh				0.0564	0.0069	0.0633	0.0633
	Crank Start Exh	0.0000	0.0006	0.0006				0.0006
	Crank Ext Idle	0.0026		0.0026				0.0026
	Ext Idle Exh	5.1847		5.1847				5.1847
NOx Total		5.2802	22.6059	27.8861	116.0405	97.0731	213.1136	240.9997
VOC	Running Exh				7.1051	22.2602	29.3653	29.3653
	Start Exh	0.1087	23.8833	23.9920				23.9920
	Evap Permeation				0.0202	6.3596	6.3798	6.3798
	Evap Fuel Vent				0.1044	15.2133	15.3176	15.3176
	Evap Fuel Leak				0.0180	2.7503	2.7683	2.7683
	Crank Run Exh				0.1359	0.2940	0.4299	0.4299
	Crank start Exh	0.0014	0.3153	0.3167				0.3167
	Crank Ext Idle	0.0348		0.0348				0.0348
	Refuel Disp Vap	0.0164	0.3902	0.4065				0.4065
	Refuel Spillage	0.2565	0.5487	0.8052				0.8052
	Ext Idle Exh	1.7387		1.7387				1.7387
<b>VOC Total</b>		2.1564	25.1375	27.2939	7.3835	46.8774	54.2609	81.5548

## Table C-17. Harris County HPMS Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network Total	Heavy Duty	Light Duty	Network Total	Total
СО	Running Exh				35.8088	636.6537	672.4624	672.4624
	Start Exh	3.3478	192.0671	195.4148				195.4148
	Crank Run Exh				0.0742	0.0991	0.1733	0.1733
	Crank Start Exh	0.0014	0.0236	0.0250				0.0250
	Crank Ext Idle	0.0063		0.0063				0.0063
	Ext Idle Exh	2.1147		2.1147				2.1147
CO Total		5.4703	192.0906	197.5610	35.8830	636.7528	672.6358	870.1967
NOx	Running Exh				83.4173	94.5313	177.9486	177.9486
	Start Exh	0.0929	22.6053	22.6982				22.6982
	Crank Run Exh				0.0411	0.0069	0.0479	0.0479
	Crank Start Exh	0.0000	0.0006	0.0006				0.0006
	Crank Ext Idle	0.0021		0.0021				0.0021
	Ext Idle Exh	4.2130		4.2130				4.2130
NOx Total		4.3080	22.6059	26.9139	83.4583	94.5382	177.9965	204.9104
VOC	Running Exh				4.7235	21.6448	26.3684	26.3684
	Start Exh	0.1087	23.8833	23.9920				23.9920
	Evap Permeation				0.0183	6.3604	6.3788	6.3788
	Evap Fuel Vent				0.0696	15.3090	15.3785	15.3785
	Evap Fuel Leak				0.0131	2.7855	2.7986	2.7986
	Crank Run Exh				0.0916	0.2927	0.3842	0.3842
	Crank start Exh	0.0014	0.3153	0.3167				0.3167
	Crank Ext Idle	0.0283		0.0283				0.0283
	Refuel Disp Vap	0.0067	0.3775	0.3842				0.3842
	Refuel Spillage	0.1835	0.5329	0.7164				0.7164
	Ext Idle Exh	1.4128		1.4128				1.4128
VOC Total		1.7414	25.1091	26.8505	4.9162	46.3923	51.3085	78.1590

### Table C-18. Harris County TDM Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network Total	Heavy Duty	Light Duty	Network Total	Total
СО	Running Exh				59.9874	679.4819	739.4692	739.4692
	Start Exh	3.3478	192.0671	195.4148				195.4148
	Crank Run Exh				0.1022	0.1039	0.2062	0.2062
	Crank Start Exh	0.0014	0.0236	0.0250				0.0250
	Crank Ext Idle	0.0078		0.0078				0.0078
	Ext Idle Exh	2.6025		2.6025				2.6025
CO Total		5.9595	192.0906	198.0502	60.0896	679.5858	739.6754	937.7256
NOx	Running Exh				115.9841	97.9323	213.9164	213.9164
	Start Exh	0.0929	22.6053	22.6982				22.6982
	Crank Run Exh				0.0564	0.0071	0.0636	0.0636
	Crank Start Exh	0.0000	0.0006	0.0006				0.0006
	Crank Ext Idle	0.0026		0.0026				0.0026
	Ext Idle Exh	5.1847		5.1847				5.1847
NOx Total		5.2802	22.6059	27.8861	116.0405	97.9395	213.9800	241.8661
VOC	Running Exh				7.1051	21.7187	28.8238	28.8238
	Start Exh	0.1087	23.8833	23.9920				23.9920
	Evap Permeation				0.0202	6.3596	6.3798	6.3798
	Evap Fuel Vent				0.1044	15.2133	15.3176	15.3176
	Evap Fuel Leak				0.0180	2.7503	2.7683	2.7683
	Crank Run Exh				0.1359	0.2870	0.4229	0.4229
	Crank start Exh	0.0014	0.3153	0.3167				0.3167
	Crank Ext Idle	0.0348		0.0348				0.0348
	Refuel Disp Vap	0.0164	0.3775	0.3938				0.3938
	Refuel Spillage	0.2565	0.5309	0.7873				0.7873
	Ext Idle Exh	1.7387		1.7387				1.7387
VOC Total		2.1564	25.1070	27.2634	7.3835	46.3288	53.7123	80.9757

### Table C-19. Harris County HPMS Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network Total	Heavy Duty	Light Duty	Network Total	Total
СО	Running Exh				35.8088	625.7783	661.5870	661.5870
	Start Exh	3.3478	192.0671	195.4148				195.4148
	Crank Run Exh				0.0742	0.0985	0.1727	0.1727
	Crank Start Exh	0.0014	0.0236	0.0250				0.0250
	Crank Ext Idle	0.0063		0.0063				0.0063
	Ext Idle Exh	2.1147		2.1147				2.1147
CO Total		5.4703	192.0906	197.5610	35.8830	625.8768	661.7597	859.3207
NOx	Running Exh				83.4173	93.3106	176.7278	176.7278
	Start Exh	0.0929	22.6053	22.6982				22.6982
	Crank Run Exh				0.0411	0.0070	0.0481	0.0481
	Crank Start Exh	0.0000	0.0006	0.0006				0.0006
	Crank Ext Idle	0.0021		0.0021				0.0021
	Ext Idle Exh	4.2130		4.2130				4.2130
NOx Total		4.3080	22.6059	26.9139	83.4583	93.3176	176.7760	203.6898
VOC	Running Exh				4.7235	20.8491	25.5727	25.5727
	Start Exh	0.1087	23.8833	23.9920				23.9920
	Evap Permeation				0.0183	6.3604	6.3788	6.3788
	Evap Fuel Vent				0.0696	15.3090	15.3785	15.3785
	Evap Fuel Leak				0.0131	2.7855	2.7986	2.7986
	Crank Run Exh				0.0916	0.2822	0.3738	0.3738
	Crank start Exh	0.0014	0.3153	0.3167				0.3167
	Crank Ext Idle	0.0283		0.0283				0.0283
	Refuel Disp Vap	0.0067	0.3610	0.3677				0.3677
	Refuel Spillage	0.1835	0.5099	0.6934				0.6934
	Ext Idle Exh	1.4128		1.4128				1.4128
VOC Total		1.7414	25.0695	26.8109	4.9162	45.5862	50.5024	77.3133

# Table C-20. Harris County TDM Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				1.1149	15.0378	16.1527	16.1527
	Start Exh	0.1946	2.7036	2.8982				2.8982
	Crank Run Exh				0.0020	0.0024	0.0044	0.0044
	Crank Start Exh	0.0001	0.0003	0.0004				0.0004
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.0370		0.0370				0.0370
CO Total		0.2317	2.7040	2.9357	1.1169	15.0403	16.1571	19.0929
NOx	Running Exh				2.3908	2.5672	4.9580	4.9580
	Start Exh	0.0056	0.2922	0.2978				0.2978
	Crank Run Exh				0.0012	0.0002	0.0013	0.0013
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0000		0.0000				0.0000
	Ext Idle Exh	0.0769		0.0769				0.0769
NOx Total		0.0825	0.2922	0.3747	2.3919	2.5674	4.9593	5.3340
VOC	Running Exh				0.1397	0.5622	0.7019	0.7019
	Start Exh	0.0065	0.3269	0.3334				0.3334
	Evap Permeation				0.0010	0.0802	0.0811	0.0811
	Evap Fuel Vent				0.0035	0.2995	0.3030	0.3030
	Evap Fuel Leak				0.0006	0.0461	0.0467	0.0467
	Crank Run Exh				0.0027	0.0075	0.0102	0.0102
	Crank start Exh	0.0001	0.0043	0.0044				0.0044
	Crank Ext Idle	0.0005		0.0005				0.0005
	Refuel Disp Vap	0.0003	0.0088	0.0092				0.0092
	Refuel Spillage	0.0050	0.0118	0.0168				0.0168
	Ext Idle Exh	0.0247		0.0247				0.0247
VOC Total		0.0371	0.3518	0.3890	0.1475	0.9955	1.1429	1.5319

## Table C-21. Liberty County HPMS Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				0.7861	16.4849	17.2710	17.2710
	Start Exh	0.1946	2.7036	2.8982				2.8982
	Crank Run Exh				0.0016	0.0027	0.0043	0.0043
	Crank Start Exh	0.0001	0.0003	0.0004				0.0004
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.0320		0.0320				0.0320
CO Total		0.2268	2.7040	2.9307	0.7877	16.4875	17.2753	20.2060
NOx	Running Exh				2.0309	2.8264	4.8573	4.8573
	Start Exh	0.0056	0.2922	0.2978				0.2978
	Crank Run Exh				0.0010	0.0002	0.0012	0.0012
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0000		0.0000				0.0000
	Ext Idle Exh	0.0666		0.0666				0.0666
NOx Total		0.0722	0.2922	0.3644	2.0319	2.8266	4.8585	5.2229
VOC	Running Exh				0.1060	0.5984	0.7045	0.7045
	Start Exh	0.0065	0.3269	0.3334				0.3334
	Evap Permeation				0.0009	0.0803	0.0812	0.0812
	Evap Fuel Vent				0.0029	0.3062	0.3091	0.3091
	Evap Fuel Leak				0.0005	0.0474	0.0479	0.0479
	Crank Run Exh				0.0021	0.0081	0.0102	0.0102
	Crank start Exh	0.0001	0.0043	0.0044				0.0044
	Crank Ext Idle	0.0004		0.0004				0.0004
	Refuel Disp Vap	0.0002	0.0096	0.0098				0.0098
	Refuel Spillage	0.0042	0.0129	0.0171				0.0171
	Ext Idle Exh	0.0214		0.0214				0.0214
VOC Total		0.0328	0.3536	0.3864	0.1125	1.0405	1.1529	1.5393

## Table C-22. Liberty County TDM Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				1.1149	11.9946	13.1094	13.1094
	Start Exh	0.1946	2.7036	2.8982				2.8982
	Crank Run Exh				0.0020	0.0020	0.0040	0.0040
	Crank Start Exh	0.0001	0.0003	0.0004				0.0004
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.0370		0.0370				0.0370
CO Total		0.2317	2.7040	2.9357	1.1169	11.9966	13.1134	16.0492
NOx	Running Exh				2.3908	2.0668	4.4575	4.4575
	Start Exh	0.0056	0.2922	0.2978				0.2978
	Crank Run Exh				0.0012	0.0002	0.0013	0.0013
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0000		0.0000				0.0000
	Ext Idle Exh	0.0769		0.0769				0.0769
NOx Total		0.0825	0.2922	0.3747	2.3919	2.0669	4.4589	4.8336
VOC	Running Exh				0.1397	0.4915	0.6313	0.6313
	Start Exh	0.0065	0.3269	0.3334				0.3334
	Evap Permeation				0.0010	0.0802	0.0811	0.0811
	Evap Fuel Vent				0.0035	0.2995	0.3030	0.3030
	Evap Fuel Leak				0.0006	0.0461	0.0467	0.0467
	Crank Run Exh				0.0027	0.0066	0.0093	0.0093
	Crank start Exh	0.0001	0.0043	0.0044				0.0044
	Crank Ext Idle	0.0005		0.0005				0.0005
	Refuel Disp Vap	0.0003	0.0069	0.0072				0.0072
	Refuel Spillage	0.0050	0.0092	0.0143				0.0143
	Ext Idle Exh	0.0247		0.0247				0.0247
VOC Total		0.0371	0.3473	0.3845	0.1475	0.9239	1.0714	1.4559

## Table C-23. Liberty County HPMS Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				0.7861	13.5237	14.3098	14.3098
	Start Exh	0.1946	2.7036	2.8982				2.8982
	Crank Run Exh				0.0016	0.0023	0.0039	0.0039
	Crank Start Exh	0.0001	0.0003	0.0004				0.0004
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.0320		0.0320				0.0320
CO Total		0.2268	2.7040	2.9307	0.7877	13.5259	14.3137	17.2444
NOx	Running Exh				2.0309	2.3087	4.3395	4.3395
	Start Exh	0.0056	0.2922	0.2978				0.2978
	Crank Run Exh				0.0010	0.0002	0.0012	0.0012
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0000		0.0000				0.0000
	Ext Idle Exh	0.0666		0.0666				0.0666
NOx Total		0.0722	0.2922	0.3644	2.0319	2.3089	4.3407	4.7051
VOC	Running Exh				0.1060	0.5290	0.6351	0.6351
	Start Exh	0.0065	0.3269	0.3334				0.3334
	Evap Permeation				0.0009	0.0803	0.0812	0.0812
	Evap Fuel Vent				0.0029	0.3062	0.3091	0.3091
	Evap Fuel Leak				0.0005	0.0474	0.0479	0.0479
	Crank Run Exh				0.0021	0.0072	0.0093	0.0093
	Crank start Exh	0.0001	0.0043	0.0044				0.0044
	Crank Ext Idle	0.0004		0.0004				0.0004
	Refuel Disp Vap	0.0002	0.0077	0.0078				0.0078
	Refuel Spillage	0.0042	0.0102	0.0144				0.0144
	Ext Idle Exh	0.0214		0.0214				0.0214
VOC Total		0.0328	0.3491	0.3818	0.1125	0.9701	1.0826	1.4644

# Table C-24. Liberty County TDM Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				5.2141	54.9700	60.1841	60.1841
	Start Exh	0.1638	16.5630	16.7269				16.7269
	Crank Run Exh				0.0091	0.0082	0.0173	0.0173
	Crank Start Exh	0.0001	0.0021	0.0021				0.0021
	Crank Ext Idle	0.0007		0.0007				0.0007
	Ext Idle Exh	0.2214		0.2214				0.2214
CO Total		0.3859	16.5651	16.9510	5.2232	54.9782	60.2014	77.1524
NOx	Running Exh				10.8132	8.5701	19.3832	19.3832
	Start Exh	0.0046	1.7281	1.7327				1.7327
	Crank Run Exh				0.0053	0.0006	0.0058	0.0058
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0002		0.0002				0.0002
	Ext Idle Exh	0.4597		0.4597				0.4597
NOx Total		0.4645	1.7281	2.1927	10.8184	8.5706	19.3890	21.5817
VOC	Running Exh				0.6254	1.8029	2.4283	2.4283
	Start Exh	0.0054	1.8563	1.8616				1.8616
	Evap Permeation				0.0011	0.4145	0.4156	0.4156
	Evap Fuel Vent				0.0078	1.2752	1.2830	1.2830
	Evap Fuel Leak				0.0013	0.2029	0.2042	0.2042
	Crank Run Exh				0.0120	0.0237	0.0357	0.0357
	Crank start Exh	0.0001	0.0245	0.0246				0.0246
	Crank Ext Idle	0.0030		0.0030				0.0030
	Refuel Disp Vap	0.0014	0.0330	0.0344				0.0344
	Refuel Spillage	0.0230	0.0492	0.0722				0.0722
	Ext Idle Exh	0.1479		0.1479				0.1479
<b>VOC Total</b>		0.1807	1.9630	2.1437	0.6475	3.7192	4.3667	6.5104

#### Table C-25. Montgomery County HPMS Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Network		Off	On Network		On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				3.6655	56.0751	59.7406	59.7406
	Start Exh	0.1638	16.5630	16.7269				16.7269
	Crank Run Exh				0.0075	0.0086	0.0161	0.0161
	Crank Start Exh	0.0001	0.0021	0.0021				0.0021
	Crank Ext Idle	0.0006		0.0006				0.0006
	Ext Idle Exh	0.1978		0.1978				0.1978
CO Total		0.3623	16.5651	16.9274	3.6730	56.0837	59.7567	76.6841
NOx	Running Exh				9.0666	8.8918	17.9583	17.9583
	Start Exh	0.0046	1.7281	1.7327				1.7327
	Crank Run Exh				0.0045	0.0006	0.0051	0.0051
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0002		0.0002				0.0002
	Ext Idle Exh	0.4108		0.4108				0.4108
NOx Total		0.4156	1.7281	2.1438	9.0710	8.8924	17.9634	20.1072
VOC	Running Exh				0.4821	1.8315	2.3136	2.3136
	Start Exh	0.0054	1.8563	1.8616				1.8616
	Evap Permeation				0.0009	0.4147	0.4156	0.4156
	Evap Fuel Vent				0.0054	1.2783	1.2837	1.2837
	Evap Fuel Leak				0.0010	0.2056	0.2066	0.2066
	Crank Run Exh				0.0094	0.0248	0.0341	0.0341
	Crank start Exh	0.0001	0.0245	0.0246				0.0246
	Crank Ext Idle	0.0026		0.0026				0.0026
	Refuel Disp Vap	0.0007	0.0340	0.0347				0.0347
	Refuel Spillage	0.0190	0.0506	0.0696				0.0696
	Ext Idle Exh	0.1322		0.1322				0.1322
VOC Total		0.1600	1.9654	2.1254	0.4987	3.7549	4.2536	6.3790

#### Table C-26. Montgomery County TDM Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
CO	Running Exh				5.2141	50.5559	55.7701	55.7701
	Start Exh	0.1638	16.5630	16.7269				16.7269
	Crank Run Exh				0.0091	0.0077	0.0167	0.0167
	Crank Start Exh	0.0001	0.0021	0.0021				0.0021
	Crank Ext Idle	0.0007		0.0007				0.0007
	Ext Idle Exh	0.2214		0.2214				0.2214
CO Total		0.3859	16.5651	16.9510	5.2232	50.5636	55.7868	72.7378
NOx	Running Exh				10.8132	7.7881	18.6013	18.6013
	Start Exh	0.0046	1.7281	1.7327				1.7327
	Crank Run Exh				0.0053	0.0005	0.0058	0.0058
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0002		0.0002				0.0002
	Ext Idle Exh	0.4597		0.4597				0.4597
NOx Total		0.4645	1.7281	2.1927	10.8184	7.7887	18.6071	20.7998
VOC	Running Exh				0.6254	1.6800	2.3054	2.3054
	Start Exh	0.0054	1.8563	1.8616				1.8616
	<b>Evap Permeation</b>				0.0011	0.4145	0.4156	0.4156
	Evap Fuel Vent				0.0078	1.2752	1.2830	1.2830
	Evap Fuel Leak				0.0013	0.2029	0.2042	0.2042
	Crank Run Exh				0.0120	0.0221	0.0341	0.0341
	Crank start Exh	0.0001	0.0245	0.0246				0.0246
	Crank Ext Idle	0.0030		0.0030				0.0030
	Refuel Disp Vap	0.0014	0.0292	0.0306				0.0306
	Refuel Spillage	0.0230	0.0436	0.0666				0.0666
	Ext Idle Exh	0.1479		0.1479				0.1479
<b>VOC</b> Total		0.1807	1.9536	2.1342	0.6475	3.5947	4.2423	6.3765

## Table C-27. Montgomery County HPMS Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Network		Off	On Network		On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				3.6655	51.6547	55.3202	55.3202
	Start Exh	0.1638	16.5630	16.7269				16.7269
	Crank Run Exh				0.0075	0.0080	0.0155	0.0155
	Crank Start Exh	0.0001	0.0021	0.0021				0.0021
	Crank Ext Idle	0.0006		0.0006				0.0006
	Ext Idle Exh	0.1978		0.1978				0.1978
CO Total		0.3623	16.5651	16.9274	3.6730	51.6627	55.3357	72.2631
NOx	Running Exh				9.0666	8.0737	17.1403	17.1403
	Start Exh	0.0046	1.7281	1.7327				1.7327
	Crank Run Exh				0.0045	0.0006	0.0050	0.0050
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0002		0.0002				0.0002
	Ext Idle Exh	0.4108		0.4108				0.4108
NOx Total		0.4156	1.7281	2.1438	9.0710	8.0743	17.1453	19.2891
VOC	Running Exh				0.4821	1.7082	2.1903	2.1903
	Start Exh	0.0054	1.8563	1.8616				1.8616
	Evap Permeation				0.0009	0.4147	0.4156	0.4156
	Evap Fuel Vent				0.0054	1.2783	1.2837	1.2837
	Evap Fuel Leak				0.0010	0.2056	0.2066	0.2066
	Crank Run Exh				0.0094	0.0231	0.0325	0.0325
	Crank start Exh	0.0001	0.0245	0.0246				0.0246
	Crank Ext Idle	0.0026		0.0026				0.0026
	Refuel Disp Vap	0.0007	0.0301	0.0308				0.0308
	Refuel Spillage	0.0190	0.0448	0.0638				0.0638
	Ext Idle Exh	0.1322		0.1322				0.1322
VOC Total		0.1600	1.9557	2.1157	0.4987	3.6300	4.1287	6.2444

### Table C-28. Montgomery County TDM Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				0.8674	13.7606	14.6279	14.6279
	Start Exh	0.0243	4.6938	4.7181				4.7181
	Crank Run Exh				0.0015	0.0020	0.0035	0.0035
	Crank Start Exh	0.0000	0.0006	0.0006				0.0006
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.0249		0.0249				0.0249
CO Total		0.0493	4.6944	4.7437	0.8688	13.7626	14.6314	19.3751
NOx	Running Exh				1.8603	2.0942	3.9545	3.9545
	Start Exh	0.0007	0.4264	0.4271				0.4271
	Crank Run Exh				0.0009	0.0001	0.0010	0.0010
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0000		0.0000				0.0000
	Ext Idle Exh	0.0501		0.0501				0.0501
NOx Total		0.0508	0.4264	0.4772	1.8613	2.0943	3.9555	4.4327
VOC	Running Exh				0.1031	0.4467	0.5498	0.5498
	Start Exh	0.0008	0.5019	0.5027				0.5027
	Evap Permeation				0.0002	0.1050	0.1052	0.1052
	Evap Fuel Vent				0.0012	0.2648	0.2660	0.2660
	Evap Fuel Leak				0.0002	0.0496	0.0498	0.0498
	Crank Run Exh				0.0020	0.0059	0.0079	0.0079
	Crank start Exh	0.0000	0.0066	0.0066				0.0066
	Crank Ext Idle	0.0003		0.0003				0.0003
	Refuel Disp Vap	0.0003	0.0074	0.0076				0.0076
	Refuel Spillage	0.0040	0.0095	0.0135				0.0135
	Ext Idle Exh	0.0167		0.0167				0.0167
VOC Total		0.0220	0.5254	0.5474	0.1067	0.8721	0.9788	1.5262

#### Table C-29. Waller County HPMS Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Network		Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				0.5674	13.7302	14.2976	14.2976
	Start Exh	0.0243	4.6938	4.7181				4.7181
	Crank Run Exh				0.0012	0.0020	0.0032	0.0032
	Crank Start Exh	0.0000	0.0006	0.0006				0.0006
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.0208		0.0208				0.0208
CO Total		0.0451	4.6944	4.7395	0.5686	13.7322	14.3008	19.0403
NOx	Running Exh				1.5526	2.1660	3.7186	3.7186
	Start Exh	0.0007	0.4264	0.4271				0.4271
	Crank Run Exh				0.0008	0.0001	0.0009	0.0009
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0000		0.0000				0.0000
	Ext Idle Exh	0.0418		0.0418				0.0418
NOx Total		0.0425	0.4264	0.4689	1.5534	2.1662	3.7195	4.1884
VOC	Running Exh				0.0756	0.4439	0.5195	0.5195
	Start Exh	0.0008	0.5019	0.5027				0.5027
	Evap Permeation				0.0001	0.1050	0.1051	0.1051
	Evap Fuel Vent				0.0008	0.2627	0.2635	0.2635
	Evap Fuel Leak				0.0001	0.0496	0.0497	0.0497
	Crank Run Exh				0.0015	0.0060	0.0075	0.0075
	Crank start Exh	0.0000	0.0066	0.0066				0.0066
	Crank Ext Idle	0.0003		0.0003				0.0003
	Refuel Disp Vap	0.0001	0.0076	0.0078				0.0078
	Refuel Spillage	0.0032	0.0099	0.0132				0.0132
	Ext Idle Exh	0.0139		0.0139				0.0139
<b>VOC Total</b>		0.0183	0.5261	0.5444	0.0781	0.8672	0.9453	1.4898

## Table C-30. Waller County TDM Based Default Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Network		Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				0.8674	11.6350	12.5024	12.5024
	Start Exh	0.0243	4.6938	4.7181				4.7181
	Crank Run Exh				0.0015	0.0017	0.0032	0.0032
	Crank Start Exh	0.0000	0.0006	0.0006				0.0006
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.0249		0.0249				0.0249
CO Total		0.0493	4.6944	4.7437	0.8688	11.6367	12.5056	17.2493
NOx	Running Exh				1.8603	1.7300	3.5903	3.5903
	Start Exh	0.0007	0.4264	0.4271				0.4271
	Crank Run Exh				0.0009	0.0001	0.0010	0.0010
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0000		0.0000				0.0000
	Ext Idle Exh	0.0501		0.0501				0.0501
NOx Total		0.0508	0.4264	0.4772	1.8613	1.7301	3.5913	4.0685
VOC	Running Exh				0.1031	0.3983	0.5014	0.5014
	Start Exh	0.0008	0.5019	0.5027				0.5027
	Evap Permeation				0.0002	0.1050	0.1052	0.1052
	Evap Fuel Vent				0.0012	0.2648	0.2660	0.2660
	Evap Fuel Leak				0.0002	0.0496	0.0498	0.0498
	Crank Run Exh				0.0020	0.0053	0.0073	0.0073
	Crank start Exh	0.0000	0.0066	0.0066				0.0066
	Crank Ext Idle	0.0003		0.0003				0.0003
	Refuel Disp Vap	0.0003	0.0060	0.0062				0.0062
	Refuel Spillage	0.0040	0.0077	0.0117				0.0117
	Ext Idle Exh	0.0167		0.0167				0.0167
VOC Total		0.0220	0.5222	0.5442	0.1067	0.8230	0.9297	1.4739

### Table C-31. Waller County HPMS Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

		Off Ne	twork	Off	On Ne	twork	On	
Pollutant	Process	Heavy Duty	Light Duty	Network	Heavy Duty	Light Duty	Network	Total
				Total			Total	
СО	Running Exh				0.5674	12.1271	12.6945	12.6945
	Start Exh	0.0243	4.6938	4.7181				4.7181
	Crank Run Exh				0.0012	0.0018	0.0030	0.0030
	Crank Start Exh	0.0000	0.0006	0.0006				0.0006
	Crank Ext Idle	0.0001		0.0001				0.0001
	Ext Idle Exh	0.0208		0.0208				0.0208
CO Total		0.0451	4.6944	4.7395	0.5686	12.1289	12.6974	17.4370
NOx	Running Exh				1.5526	1.8709	3.4235	3.4235
	Start Exh	0.0007	0.4264	0.4271				0.4271
	Crank Run Exh				0.0008	0.0001	0.0009	0.0009
	Crank Start Exh	0.0000	0.0000	0.0000				0.0000
	Crank Ext Idle	0.0000		0.0000				0.0000
	Ext Idle Exh	0.0418		0.0418				0.0418
NOx Total		0.0425	0.4264	0.4689	1.5534	1.8710	3.4244	3.8933
VOC	Running Exh				0.0756	0.4054	0.4810	0.4810
	Start Exh	0.0008	0.5019	0.5027				0.5027
	Evap Permeation				0.0001	0.1050	0.1051	0.1051
	Evap Fuel Vent				0.0008	0.2627	0.2635	0.2635
	Evap Fuel Leak				0.0001	0.0496	0.0497	0.0497
	Crank Run Exh				0.0015	0.0055	0.0069	0.0069
	Crank start Exh	0.0000	0.0066	0.0066				0.0066
	Crank Ext Idle	0.0003		0.0003				0.0003
	Refuel Disp Vap	0.0001	0.0064	0.0065				0.0065
	Refuel Spillage	0.0032	0.0083	0.0116				0.0116
	Ext Idle Exh	0.0139		0.0139				0.0139
VOC Total		0.0183	0.5232	0.5416	0.0781	0.8281	0.9063	1.4478

# Table C-32. Waller County TDM Based KC Cycle Emissions (tons)2006 Ozone Season Weekday

Appendix D MOVES Output Comparisons for Drive Cycles, by County

		I	Default Cycl	e		KC Cycle		%	Differenc	e
County	VMTBasis	СО	NOx	VOC	СО	NOx	VOC	CO	NOx	VOC
Drozorio	HPMS	43.70863	6.398877	3.922461	39.47485	5.814259	3.810186	-9.69%	-9.14%	-2.86%
Diazona	TDM	43.80553	6.51149	3.873483	39.9157	5.910196	3.768589	-8.88%	-9.23%	-2.71%
Chambara	HPMS	19.86969	2.749032	0.881255	18.67417	2.540992	0.848735	-6.02%	-7.57%	-3.69%
Chambers	TDM	17.17472	2.635875	0.836268	16.17717	2.436423	0.806585	-5.81%	-7.57%	-3.55%
Fort Dand	HPMS	58.97364	8.482754	5.047657	55.72775	8.107834	4.943177	-5.50%	-4.42%	-2.07%
Fort Bellu	TDM	57.82724	8.396444	4.929238	54.97754	7.989984	4.833137	-4.93%	-4.84%	-1.95%
Galvaston	HPMS	47.67195	6.473907	3.692336	45.9118	6.423097	3.628485	-3.69%	-0.78%	-1.73%
Galvestoli	TDM	45.7267	6.566317	3.724724	43.63803	6.409915	3.649997	-4.57%	-2.38%	-2.01%
Uarris	HPMS	870.0719	119.6789	72.01485	871.6764	120.5453	71.43576	0.18%	0.72%	-0.80%
пашя	TDM	828.8435	117.144	71.5014	817.9674	115.9235	70.65574	-1.31%	-1.04%	-1.18%
Liberty	HPMS	17.74423	2.859585	1.347318	14.70055	2.359155	1.271278	-17.15%	-17.50%	-5.64%
Liberty	TDM	19.19152	3.118823	1.394125	16.22991	2.601076	1.319179	-15.43%	-16.60%	-5.38%
Montgomore	HPMS	71.54328	10.29874	5.682195	67.1287	9.516807	5.548272	-6.17%	-7.59%	-2.36%
Monigomery	TDM	72.64882	10.6205	5.720273	68.22778	9.802398	5.585689	-6.09%	-7.70%	-2.35%
Wallor	HPMS	18.45698	2.520675	1.397498	16.33115	2.15646	1.34518	-11.52%	-14.45%	-3.74%
vv anei	TDM	18.42664	2.59254	1.393278	16.8233	2.297426	1.351363	-8.70%	-11.38%	-3.01%

Table D-1. Drive Cycle Output Comparison, by County (tons)2006 Ozone Season Weekday Light Duty Vehicles Only

			Default Cycle		KC Cycle			% Difference			
County	VMTBasis	Source	CO	NOx	VOC	СО	NOx	VOC	CO	NOx	VOC
		Motorcycles	0.52725	0.021156	0.12825	0.411062	0.015412	0.12406	-22.04%	-27.15%	-3.27%
	HDMC	Passenger Cars	20.72819	2.917037	2.102078	18.82799	2.651469	2.051022	-9.17%	-9.10%	-2.43%
	приз	Passenger Trucks	15.33627	2.154499	1.143553	13.76888	1.927655	1.104404	-10.22%	-10.53%	-3.42%
Duogonio		Light Commercial Trucks	7.116922	1.306184	0.548579	6.466916	1.219723	0.5307	-9.13%	-6.62%	-3.26%
Drazoria		Motorcycles	0.122865	0.005085	0.089685	0.097426	0.00382	0.08878	-20.70%	-24.87%	-1.01%
	TDM	Passenger Cars	20.85812	2.957643	2.090228	19.15599	2.689004	2.042067	-8.16%	-9.08%	-2.30%
	IDNI	Passenger Trucks	15.60712	2.212295	1.144487	14.08078	1.975441	1.106182	-9.78%	-10.71%	-3.35%
		Light Commercial Trucks	7.217426	1.336467	0.549083	6.581506	1.241931	0.531561	-8.81%	-7.07%	-3.19%
		Motorcycles	0.254802	0.01078	0.03894	0.20502	0.008345	0.037205	-19.54%	-22.59%	-4.45%
	HDMS	Passenger Cars	9.897391	1.227728	0.454394	9.455743	1.14282	0.439817	-4.46%	-6.92%	-3.21%
	приз	Passenger Trucks	4.821448	0.640222	0.178025	4.464287	0.580222	0.170537	-7.41%	-9.37%	-4.21%
Chambana		Light Commercial Trucks	4.896047	0.870302	0.209897	4.549123	0.809606	0.201177	-7.09%	-6.97%	-4.15%
TDN		Motorcycles	0.059411	0.002567	0.024721	0.048316	0.002025	0.024334	-18.68%	-21.13%	-1.56%
	TDM	Passenger Cars	8.903993	1.227717	0.450281	8.571872	1.146188	0.436595	-3.73%	-6.64%	-3.04%
		Passenger Trucks	4.02214	0.592666	0.164978	3.695462	0.535098	0.157868	-8.12%	-9.71%	-4.31%
		Light Commercial Trucks	4.189174	0.812926	0.196288	3.861517	0.753113	0.187787	-7.82%	-7.36%	-4.33%
		Motorcycles	0.741642	0.02877	0.187807	0.644685	0.024019	0.184153	-13.07%	-16.51%	-1.95%
	UDMC	Passenger Cars	28.1779	3.909783	2.652771	26.68862	3.717443	2.605163	-5.29%	-4.92%	-1.79%
	пгмъ	Passenger Trucks	21.98207	3.025263	1.593642	20.7381	2.875081	1.554523	-5.66%	-4.96%	-2.45%
Fort Pond		Light Commercial Trucks	8.072024	1.518938	0.613436	7.656349	1.491291	0.599338	-5.15%	-1.82%	-2.30%
Fort Della		Motorcycles	0.165966	0.0066	0.13022	0.145225	0.005574	0.12946	-12.50%	-15.55%	-0.58%
	TDM	Passenger Cars	27.78197	3.85464	2.609415	26.56614	3.657134	2.566275	-4.38%	-5.12%	-1.65%
		Passenger Trucks	21.86675	3.019335	1.58092	20.66278	2.851293	1.542556	-5.51%	-5.57%	-2.43%
		Light Commercial Trucks	8.012556	1.51587	0.608684	7.603392	1.475984	0.594847	-5.11%	-2.63%	-2.27%
		Motorcycles	0.531792	0.020391	0.117291	0.483207	0.018107	0.115361	-9.14%	-11.20%	-1.65%
	HDMS	Passenger Cars	24.81641	3.164275	2.239942	24.02579	3.1261	2.211014	-3.19%	-1.21%	-1.29%
	nr wis	Passenger Trucks	15.55283	2.051671	0.904547	14.89976	2.025078	0.881677	-4.20%	-1.30%	-2.53%
Colvector		Light Commercial Trucks	6.770919	1.237571	0.430555	6.503047	1.253812	0.420433	-3.96%	1.31%	-2.35%
Gaiveston		Motorcycles	0.121118	0.004709	0.077825	0.11044	0.004201	0.077413	-8.82%	-10.77%	-0.53%
	трм	Passenger Cars	24.11692	3.216474	2.271316	23.14126	3.120477	2.236322	-4.05%	-2.98%	-1.54%
	1 1/1/1	Passenger Trucks	14.88055	2.068695	0.92927	14.09953	2.009687	0.901732	-5.25%	-2.85%	-2.96%
		Light Commercial Trucks	6.608101	1.276439	0.446314	6.286802	1.275549	0.434531	-4.86%	-0.07%	-2.64%
Harris	HPMS	Motorcycles	9.23122	0.353998	1.854025	8.958747	0.339694	1.842335	-2.95%	-4.04%	-0.63%

#### Table D-2. Drive Cycle Output Comparison, by County and Source Type (tons)2006 Ozone Season Weekday Light Duty Vehicles Only

			Default Cycle			KC Cycle			% Difference		
County	VMTBasis	Source	СО	NOx	VOC	СО	NOx	VOC	CO	NOx	VOC
		Passenger Cars	462.8313	60.24636	45.47793	464.3603	60.22284	45.23172	0.33%	-0.04%	-0.54%
		Passenger Trucks	270.3934	35.5144	16.27798	270.7299	35.84237	16.05809	0.12%	0.92%	-1.35%
		Light Commercial Trucks	127.616	23.56415	8.404919	127.6274	24.14042	8.303611	0.01%	2.45%	-1.21%
		Motorcycles	1.959473	0.074472	1.132602	1.903016	0.071617	1.129965	-2.88%	-3.83%	-0.23%
	трм	Passenger Cars	454.192	60.20051	45.8029	449.4793	59.17914	45.41924	-1.04%	-1.70%	-0.84%
	I DM	Passenger Trucks	251.993	33.86467	16.16649	247.869	33.49947	15.84785	-1.64%	-1.08%	-1.97%
		Light Commercial Trucks	120.699	23.00438	8.399413	118.7161	23.17324	8.258679	-1.64%	0.73%	-1.68%
		Motorcycles	0.223702	0.009514	0.037584	0.148129	0.005687	0.03496	-33.78%	-40.22%	-6.98%
	UDMS	Passenger Cars	9.044132	1.354014	0.776719	7.593006	1.120887	0.73912	-16.04%	-17.22%	-4.84%
	nrms	Passenger Trucks	4.056975	0.622682	0.245268	3.296763	0.494168	0.228196	-18.74%	-20.64%	-6.96%
Liborty		Light Commercial Trucks	4.419426	0.873375	0.287747	3.662651	0.738413	0.269002	-17.12%	-15.45%	-6.51%
TI		Motorcycles	0.055556	0.002386	0.023369	0.038198	0.001506	0.022768	-31.24%	-36.89%	-2.57%
	TDM	Passenger Cars	9.821042	1.469501	0.805581	8.424578	1.230802	0.768136	-14.22%	-16.24%	-4.65%
		Passenger Trucks	4.474413	0.68718	0.259936	3.699954	0.552161	0.242379	-17.31%	-19.65%	-6.75%
		Light Commercial Trucks	4.840506	0.959756	0.30524	4.067182	0.816606	0.285896	-15.98%	-14.92%	-6.34%
		Motorcycles	0.928327	0.038314	0.278112	0.763875	0.029951	0.272278	-17.71%	-21.83%	-2.10%
	нрмс	Passenger Cars	33.67318	4.634644	2.861381	31.79994	4.280482	2.800185	-5.56%	-7.64%	-2.14%
	111 1/15	Passenger Trucks	26.57785	3.686995	1.799116	24.8284	3.372607	1.751356	-6.58%	-8.53%	-2.65%
Montgomery		Light Commercial Trucks	10.36392	1.938792	0.743587	9.73648	1.833765	0.724452	-6.05%	-5.42%	-2.57%
wonigomery		Motorcycles	0.219438	0.009193	0.214278	0.182429	0.007307	0.212968	-16.87%	-20.51%	-0.61%
	трм	Passenger Cars	34.20369	4.701708	2.875734	32.45776	4.352449	2.816393	-5.10%	-7.43%	-2.06%
		Passenger Trucks	27.49395	3.862089	1.857636	25.5643	3.514919	1.804972	-7.02%	-8.99%	-2.84%
		Light Commercial Trucks	10.73174	2.047508	0.772625	10.02329	1.927722	0.751356	-6.60%	-5.85%	-2.75%
		Motorcycles	0.185081	0.007815	0.020868	0.128809	0.005028	0.018917	-30.40%	-35.66%	-9.35%
	нрмс	Passenger Cars	8.271099	1.13423	0.642517	7.296081	0.968236	0.616533	-11.79%	-14.63%	-4.04%
		Passenger Trucks	6.256162	0.79141	0.454389	5.548082	0.668348	0.439219	-11.32%	-15.55%	-3.34%
Wallor		Light Commercial Trucks	3.744636	0.587221	0.279724	3.358182	0.514847	0.270511	-10.32%	-12.32%	-3.29%
vv allel		Motorcycles	0.044766	0.001906	0.009862	0.033423	0.001345	0.009466	-25.34%	-29.41%	-4.01%
	трм	Passenger Cars	8.406366	1.185246	0.649495	7.722581	1.055248	0.628843	-8.13%	-10.97%	-3.18%
		Passenger Trucks	6.234707	0.808057	0.454132	5.650723	0.704518	0.441295	-9.37%	-12.81%	-2.83%
	]	Light Commercial Trucks	3.740799	0.597332	0.279789	3.416574	0.536313	0.271759	-8.67%	-10.22%	-2.87%

			Default Cycle		KC Cycle			% Difference			
County	VMTBasis	Road Type	СО	NOx	VOC	СО	NOx	VOC	CO	NOx	VOC
		Off-Network	12.04746	1.332029	2.321668	12.04746	1.332029	2.31458	0.00%	0.00%	-0.31%
		Rural Restricted	0	0		0	0				
	HPMS	Rural Unrestricted	16.82968	2.787746	0.88647	14.29974	2.402795	0.823712	-15.03%	-13.81%	-7.08%
		Urban Restricted	3.177106	0.417271	0.099848	3.173567	0.405546	0.09854	-0.11%	-2.81%	-1.31%
Drozonio		Urban Unrestricted	11.65439	1.861831	0.614476	9.954079	1.673889	0.573353	-14.59%	-10.09%	-6.69%
Drazoria		Off-Network	12.04746	1.332029	2.321962	12.04746	1.332029	2.315088	0.00%	0.00%	-0.30%
		Rural Restricted	5.394966	0.772524	0.180416	5.417032	0.749831	0.178163	0.41%	-2.94%	-1.25%
	TDM	Rural Unrestricted	22.62456	3.792735	1.176208	19.25444	3.274214	1.093407	-14.90%	-13.67%	-7.04%
		Urban Restricted	0	0		0	0				
		Urban Unrestricted	3.73854	0.614203	0.194897	3.196771	0.554122	0.181931	-14.49%	-9.78%	-6.65%
		Off-Network	1.060839	0.118616	0.229671	1.060839	0.118616	0.227119	0.00%	0.00%	-1.11%
		Rural Restricted	14.16617	1.848084	0.438486	14.09673	1.80839	0.43199	-0.49%	-2.15%	-1.48%
Chambers –	HPMS	Rural Unrestricted	3.910382	0.664285	0.179481	2.959055	0.516586	0.159562	-24.33%	-22.23%	-11.10%
		Urban Restricted	0	0		0	0				
		Urban Unrestricted	0.732298	0.118047	0.033616	0.557552	0.0974	0.030065	-23.86%	-17.49%	-10.56%
	TDM	Off-Network	1.060839	0.118616	0.229036	1.060839	0.118616	0.226543	0.00%	0.00%	-1.09%
		Rural Restricted	11.89827	1.796377	0.415343	11.9157	1.750928	0.409028	0.15%	-2.53%	-1.52%
		Rural Unrestricted	3.528569	0.606546	0.160564	2.67683	0.472239	0.14295	-24.14%	-22.14%	-10.97%
		Urban Restricted	0	0		0	0				
		Urban Unrestricted	0.687039	0.114336	0.031324	0.523799	0.09464	0.028064	-23.76%	-17.23%	-10.41%
		Off-Network	15.28123	1.72535	2.933869	15.28123	1.72535	2.927302	0.00%	0.00%	-0.22%
		Rural Restricted	0.403432	0.053156	0.012666	0.427221	0.054775	0.012869	5.90%	3.05%	1.61%
	HPMS	Rural Unrestricted	12.55211	2.056211	0.667356	11.12163	1.865597	0.628327	-11.40%	-9.27%	-5.85%
		Urban Restricted	9.230479	1.216039	0.289832	9.777997	1.254034	0.294548	5.93%	3.12%	1.63%
Fort Bend		Urban Unrestricted	21.50639	3.431999	1.143933	19.11967	3.208078	1.08013	-11.10%	-6.52%	-5.58%
Fort Denu		Off-Network	15.28123	1.72535	2.932808	15.28123	1.72535	2.926589	0.00%	0.00%	-0.21%
		Rural Restricted	10.04983	1.320094	0.310366	10.68461	1.365573	0.316174	6.32%	3.45%	1.87%
	TDM	Rural Unrestricted	26.48723	4.394792	1.389799	23.50374	3.990832	1.308532	-11.26%	-9.19%	-5.85%
		Urban Restricted	0.916768	0.120398	0.02831	0.974688	0.124547	0.02884	6.32%	3.45%	1.87%
		Urban Unrestricted	5.092182	0.83581	0.267954	4.533273	0.783683	0.253002	-10.98%	-6.24%	-5.58%
		Off-Network	9.827772	1.120431	1.987002	9.827772	1.120431	1.983327	0.00%	0.00%	-0.18%
Galveston	HPMS	Rural Restricted	1.179475	0.149802	0.036525	1.186932	0.148842	0.036221	0.63%	-0.64%	-0.83%
Galveston	R	Rural Unrestricted	1.788855	0.27803	0.09737	1.639967	0.266627	0.092728	-8.32%	-4.10%	-4.77%

#### Table D-3. Drive Cycle Output Comparison, By County and Road Type (tons)2006 Ozone Season Weekday Light Duty Vehicles Only

			Default Cycle			KC Cycle		% Difference			
County	VMTBasis	Road Type	CO	NOx	VOC	CO	NOx	VOC	CO	NOx	VOC
		Urban Restricted	13.89603	1.765952	0.43025	13.98512	1.754053	0.426689	0.64%	-0.67%	-0.83%
		Urban Unrestricted	20.97982	3.159693	1.14119	19.27202	3.133144	1.08952	-8.14%	-0.84%	-4.53%
		Off-Network	9.827772	1.120431	1.985228	9.827772	1.120431	1.981237	0.00%	0.00%	-0.20%
		Rural Restricted	8.981914	1.238618	0.294854	9.098274	1.228091	0.292752	1.30%	-0.85%	-0.71%
	TDM	Rural Unrestricted	22.44916	3.518835	1.206583	20.59365	3.376948	1.148696	-8.27%	-4.03%	-4.80%
		Urban Restricted	0.111103	0.015321	0.003647	0.112542	0.015191	0.003621	1.30%	-0.85%	-0.71%
		Urban Unrestricted	4.356744	0.673112	0.234412	4.005789	0.669255	0.223691	-8.06%	-0.57%	-4.57%
		Off-Network	192.0906	22.60585	40.5819	192.0906	22.60585	40.55136	0.00%	0.00%	-0.08%
		Rural Restricted	4.585315	0.5856	0.157642	4.949386	0.638488	0.162266	7.94%	9.03%	2.93%
	HPMS	Rural Unrestricted	17.73641	2.848437	1.046152	16.33952	2.655718	0.997216	-7.88%	-6.77%	-4.68%
		Urban Restricted	344.173	43.9539	11.84874	371.2147	47.95919	12.19321	7.86%	9.11%	2.91%
Housia		Urban Unrestricted	311.4865	49.68513	18.38042	287.0822	46.68608	17.53171	-7.83%	-6.04%	-4.62%
Harris		Off-Network	192.0906	22.60585	40.52188	192.0906	22.60585	40.48233	0.00%	0.00%	-0.10%
	TDM	Rural Restricted	132.9645	16.89972	4.529486	143.3171	18.50865	4.663813	7.79%	9.52%	2.97%
		Rural Unrestricted	280.8401	45.63547	16.37325	258.2965	42.36963	15.59148	-8.03%	-7.16%	-4.77%
		Urban Restricted	120.7583	15.34879	4.113693	130.1602	16.81004	4.235683	7.79%	9.52%	2.97%
		Urban Unrestricted	102.1899	16.6542	5.963093	94.10302	15.6293	5.682429	-7.91%	-6.15%	-4.71%
	HPMS	Off-Network	2.703983	0.292224	0.57448	2.703983	0.292224	0.569988	0.00%	0.00%	-0.78%
		Rural Restricted	0	0		0	0				
		Rural Unrestricted	11.27353	1.953977	0.583504	8.925349	1.547278	0.528017	-20.83%	-20.81%	-9.51%
		Urban Restricted	0.329034	0.045162	0.011218	0.328457	0.043788	0.01107	-0.18%	-3.04%	-1.32%
Thouty		Urban Unrestricted	3.437689	0.568222	0.178116	2.742759	0.475866	0.162204	-20.22%	-16.25%	-8.93%
Liberty		Off-Network	2.703983	0.292224	0.575288	2.703983	0.292224	0.570709	0.00%	0.00%	-0.80%
		Rural Restricted	2.016956	0.303369	0.07414	2.023217	0.293305	0.073175	0.31%	-3.32%	-1.30%
	TDM	Rural Unrestricted	12.62906	2.210347	0.649943	10.03062	1.75284	0.588902	-20.58%	-20.70%	-9.39%
		Urban Restricted	0	0		0	0				
		Urban Unrestricted	1.841519	0.312884	0.094755	1.472097	0.262708	0.086393	-20.06%	-16.04%	-8.82%
		Off-Network	16.5651	1.728133	3.168523	16.5651	1.728133	3.159073	0.00%	0.00%	-0.30%
		Rural Restricted	11.67506	1.563717	0.376881	12.11512	1.581179	0.379337	3.77%	1.12%	0.65%
	HPMS	Rural Unrestricted	26.13657	4.425637	1.386155	22.32587	3.785197	1.290309	-14.58%	-14.47%	-6.91%
Montgomery		Urban Restricted	7.737089	1.03654	0.249868	8.02841	1.048839	0.251511	3.77%	1.19%	0.66%
		Urban Unrestricted	9.429453	1.544718	0.500769	8.094206	1.373459	0.468043	-14.16%	-11.09%	-6.54%
		Off-Network	16.5651	1.728133	3.168415	16.5651	1.728133	3.158759	0.00%	0.00%	-0.30%
	трм	Rural Restricted	19.32878	2.582937	0.61611	20.11291	2.620292	0.621333	4.06%	1.45%	0.85%
		Rural Unrestricted	29.6355	5.109463	1.560483	25.41965	4.383158	1.45449	-14.23%	-14.21%	-6.79%
	I	Urban Restricted	0	0		0	0				

			Default Cycle				KC Cycle		% Difference		
County	VMTBasis	Road Type	CO	NOx	VOC	CO	NOx	VOC	CO	NOx	VOC
		Urban Unrestricted	7.119447	1.199965	0.375265	6.130122	1.070814	0.351108	-13.90%	-10.76%	-6.44%
		Off-Network	4.694406	0.426388	0.79625	4.694406	0.426388	0.792998	0.00%	0.00%	-0.41%
	HPMS	Rural Restricted	4.655509	0.59704	0.153943	4.638789	0.580877	0.151902	-0.36%	-2.71%	-1.33%
		Rural Unrestricted	9.006093	1.481539	0.442348	6.919857	1.136362	0.395814	-23.16%	-23.30%	-10.52%
		Urban Restricted	0	0		0	0				
Wallon		Urban Unrestricted	0.100969	0.015707	0.004957	0.078103	0.012832	0.004466	-22.65%	-18.30%	-9.91%
waller		Off-Network	4.694406	0.426388	0.796881	4.694406	0.426388	0.79403	0.00%	0.00%	-0.36%
	TDM	Rural Restricted	6.655521	0.996453	0.250977	6.674646	0.964727	0.247546	0.29%	-3.18%	-1.37%
		Rural Unrestricted	5.974166	0.993783	0.291741	4.60047	0.762538	0.261368	-22.99%	-23.27%	-10.41%
		Urban Restricted	0	0		0	0				
		Urban Unrestricted	1.102545	0.175917	0.05368	0.85378	0.143772	0.048419	-22.56%	-18.27%	-9.80%

			Default				KC		% Difference		
County	VMTBasis	Process	CO	NOx	VOC	CO	NOx	VOC	CO	NOx	VOC
		Running Exh	31.65626	5.066506	1.136113	27.423	4.481894	1.032273	-13.37%	-11.54%	-9.14%
		Start Exh	12.04597	1.331992	1.419395	12.04597	1.331992	1.419395	0.00%	0.00%	0.00%
		<b>Evap Permeation</b>			0.327969			0.327969			0.00%
		Evap Fuel Vent			0.810057			0.810057			0.00%
	HPMS	Evap Fuel Leak			0.146375			0.146375			0.00%
		Crank Run Exh	0.004908	0.000343	0.014972	0.004384	0.000336	0.013625	-10.69%	-2.03%	-8.99%
		Crank Start Exh	0.001489	3.67E-05	0.018738	0.001489	3.67E-05	0.018738	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.019923			0.017036			-14.49%
Duogonio		Refuel Spillage			0.02892			0.024719			-14.53%
Drazoria		Running Exh	31.7531	5.179112	1.105894	27.86376	4.577828	1.009169	-12.25%	-11.61%	-8.75%
		Start Exh	12.04597	1.331992	1.419395	12.04597	1.331992	1.419395	0.00%	0.00%	0.00%
	TDM	<b>Evap Permeation</b>			0.327671			0.327671			0.00%
		Evap Fuel Vent			0.792447			0.792447			0.00%
		Evap Fuel Leak			0.145319			0.145319			0.00%
		Crank Run Exh	0.004969	0.000349	0.014962	0.004478	0.00034	0.013667	-9.89%	-2.73%	-8.65%
		Crank Start Exh	0.001489	3.67E-05	0.018738	0.001489	3.67E-05	0.018738	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.020052			0.017243			-14.01%
		Refuel Spillage			0.029004			0.02494			-14.01%
		Running Exh	18.80601	2.630232	0.504903	17.61067	2.422196	0.475327	-6.36%	-7.91%	-5.86%
		Start Exh	1.060707	0.118612	0.129414	1.060707	0.118612	0.129414	0.00%	0.00%	0.00%
		<b>Evap Permeation</b>			0.036327			0.036327			0.00%
		Evap Fuel Vent			0.15674			0.15674			0.00%
	HPMS	Evap Fuel Leak			0.024165			0.024165			0.00%
Chambang		Crank Run Exh	0.002841	0.000184	0.006728	0.002663	0.00018	0.006337	-6.29%	-2.21%	-5.82%
Chambers		Crank Start Exh	0.000132	3.44E-06	0.001705	0.000132	3.44E-06	0.001705	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.008865			0.007801			-12.00%
		Refuel Spillage			0.012407			0.010919			-11.99%
		Running Exh	16.11137	2.517087	0.463725	15.11398	2.317639	0.436906	-6.19%	-7.92%	-5.78%
	TDM	Start Exh	1.060707	0.118612	0.129414	1.060707	0.118612	0.129414	0.00%	0.00%	0.00%
		Evap Permeation			0.036244			0.036244			0.00%

#### Table D-4. Drive Cycle Output Comparison, By County and Emissions Process (tons)2006 Ozone Season Weekday Light Duty Vehicles Only

			Default		КС			% Difference			
County	VMTBasis	Process	CO	NOx	VOC	СО	NOx	VOC	CO	NOx	VOC
		Evap Fuel Vent			0.154137			0.154137			0.00%
		Evap Fuel Leak			0.024146			0.024146			0.00%
		Crank Run Exh	0.002512	0.000172	0.006314	0.002352	0.000168	0.005943	-6.34%	-2.35%	-5.87%
		Crank Start Exh	0.000132	3.44E-06	0.001705	0.000132	3.44E-06	0.001705	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.008509			0.007475			-12.16%
		Refuel Spillage			0.012074			0.010616			-12.08%
		Running Exh	43.6857	6.75694	1.489929	40.4402	6.382013	1.393266	-7.43%	-5.55%	-6.49%
		Start Exh	15.27934	1.725302	1.779019	15.27934	1.725302	1.779019	0.00%	0.00%	0.00%
		Evap Permeation			0.396453			0.396453			0.00%
		Evap Fuel Vent			1.085649			1.085649			0.00%
	HPMS	Evap Fuel Leak			0.184263			0.184263			0.00%
		Crank Run Exh	0.006712	0.000465	0.019556	0.006325	0.000471	0.018307	-5.77%	1.34%	-6.39%
		Crank Start Exh	0.001891	4.77E-05	0.023487	0.001891	4.77E-05	0.023487	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.027661			0.025046			-9.46%
Fort Pond		Refuel Spillage			0.041639			0.037687			-9.49%
Fort Bend		Running Exh	42.5394	6.670632	1.412068	39.69004	6.264171	1.323366	-6.70%	-6.09%	-6.28%
		Start Exh	15.27934	1.725302	1.779019	15.27934	1.725302	1.779019	0.00%	0.00%	0.00%
		<b>Evap Permeation</b>			0.395985			0.395985			0.00%
		Evap Fuel Vent			1.050683			1.050683			0.00%
	TDM	Evap Fuel Leak			0.181533			0.181533			0.00%
		Crank Run Exh	0.006613	0.000462	0.01909	0.006273	0.000464	0.017911	-5.15%	0.40%	-6.18%
		Crank Start Exh	0.001891	4.77E-05	0.023487	0.001891	4.77E-05	0.023487	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.026948			0.024456			-9.25%
		Refuel Spillage			0.040424			0.036696			-9.22%
		Running Exh	37.83845	5.353113	1.22009	36.07853	5.302287	1.160686	-4.65%	-0.95%	-4.87%
		Start Exh	9.826565	1.120402	1.19541	9.826565	1.120402	1.19541	0.00%	0.00%	0.00%
		<b>Evap Permeation</b>			0.321497			0.321497			0.00%
Galveston		Evap Fuel Vent			0.728615			0.728615			0.00%
	HPMS	Evap Fuel Leak			0.14286			0.14286			0.00%
		Crank Run Exh	0.005723	0.000363	0.016083	0.005507	0.000379	0.01531	-3.77%	4.40%	-4.80%
		Crank Start Exh	0.001207	2.87E-05	0.015775	0.001207	2.87E-05	0.015775	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.021398			0.019887			-7.06%
		Refuel Spillage			0.030609			0.028444			-7.07%

			Default		КС			% Difference			
County	VMTBasis	Process	CO	NOx	VOC	СО	NOx	VOC	CO	NOx	VOC
		Running Exh	35.89331	5.445504	1.228596	33.80489	5.289091	1.158785	-5.82%	-2.87%	-5.68%
		Start Exh	9.826565	1.120402	1.19541	9.826565	1.120402	1.19541	0.00%	0.00%	0.00%
		<b>Evap Permeation</b>			0.321811			0.321811			0.00%
		Evap Fuel Vent			0.747386			0.747386			0.00%
	TDM	Evap Fuel Leak			0.146609			0.146609			0.00%
		Crank Run Exh	0.005608	0.000382	0.016607	0.005368	0.000393	0.015682	-4.28%	2.86%	-5.57%
		Crank Start Exh	0.001207	2.87E-05	0.015775	0.001207	2.87E-05	0.015775	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.021606			0.019964			-7.60%
		Refuel Spillage			0.030924			0.028576			-7.59%
		Running Exh	677.8779	97.06621	22.2602	679.4819	97.93234	21.71867	0.24%	0.89%	-2.43%
		Start Exh	192.0671	22.60527	23.88333	192.0671	22.60527	23.88333	0.00%	0.00%	0.00%
	HPMS	<b>Evap Permeation</b>			6.359618			6.359618			0.00%
		Evap Fuel Vent			15.21327			15.21327			0.00%
		Evap Fuel Leak			2.750296			2.750296			0.00%
		Crank Run Exh	0.10333	0.006853	0.293988	0.103925	0.007135	0.286958	0.58%	4.11%	-2.39%
		Crank Start Exh	0.023588	0.000575	0.315297	0.023588	0.000575	0.315297	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.390153			0.377462			-3.25%
Uomic		Refuel Spillage			0.548708			0.530863			-3.25%
narris		Running Exh	636.6537	94.53132	21.64481	625.7783	93.31058	20.84912	-1.71%	-1.29%	-3.68%
		Start Exh	192.0671	22.60527	23.88333	192.0671	22.60527	23.88333	0.00%	0.00%	0.00%
		Evap Permeation			6.360426			6.360426			0.00%
		Evap Fuel Vent			15.30896			15.30896			0.00%
	TDM	Evap Fuel Leak			2.78547			2.78547			0.00%
		Crank Run Exh	0.099133	0.006857	0.292671	0.098497	0.007033	0.282243	-0.64%	2.56%	-3.56%
		Crank Start Exh	0.023588	0.000575	0.315297	0.023588	0.000575	0.315297	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.377541			0.361017			-4.38%
		Refuel Spillage			0.532899			0.509877			-4.32%
		Running Exh	15.03784	2.567181	0.562163	11.99456	2.066764	0.491544	-20.24%	-19.49%	-12.56%
		Start Exh	2.703649	0.292216	0.326857	2.703649	0.292216	0.326857	0.00%	0.00%	0.00%
Tiboute	HDMG	<b>Evap Permeation</b>			0.080179			0.080179			0.00%
Liberty	<b>HFWI5</b>	Evap Fuel Vent			0.299522			0.299522			0.00%
		Evap Fuel Leak			0.046124			0.046124			0.00%
		Crank Run Exh	0.002407	0.000181	0.00749	0.00201	0.000168	0.006562	-16.49%	-7.05%	-12.40%

			Default			KC		% Difference			
County	VMTBasis	Process	CO	NOx	VOC	CO	NOx	VOC	CO	NOx	VOC
		Crank Start Exh	0.000334	8.14E-06	0.004316	0.000334	8.14E-06	0.004316	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.00885			0.00693			-21.69%
		Refuel Spillage			0.011819			0.009246			-21.77%
		Running Exh	16.48488	2.826401	0.598447	13.52367	2.308668	0.529021	-17.96%	-18.32%	-11.60%
		Start Exh	2.703649	0.292216	0.326857	2.703649	0.292216	0.326857	0.00%	0.00%	0.00%
		Evap Permeation			0.080282			0.080282			0.00%
		Evap Fuel Vent			0.306185			0.306185			0.00%
	TDM	Evap Fuel Leak			0.04743			0.04743			0.00%
		Crank Run Exh	0.002651	0.000198	0.008137	0.002256	0.000184	0.007196	-14.91%	-6.96%	-11.56%
		Crank Start Exh	0.000334	8.14E-06	0.004316	0.000334	8.14E-06	0.004316	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.009617			0.00766			-20.35%
		Refuel Spillage			0.012854			0.010232			-20.40%
	HPMS	Running Exh	54.96995	8.570053	1.802869	50.55593	7.788126	1.679985	-8.03%	-9.12%	-6.82%
		Start Exh	16.56305	1.728084	1.856271	16.56305	1.728084	1.856271	0.00%	0.00%	0.00%
		<b>Evap Permeation</b>			0.414504			0.414504			0.00%
		Evap Fuel Vent			1.275196			1.275196			0.00%
		Evap Fuel Leak			0.202913			0.202913			0.00%
		Crank Run Exh	0.008228	0.000558	0.023708	0.007679	0.000547	0.022118	-6.68%	-1.94%	-6.70%
		Crank Start Exh	0.00205	4.91E-05	0.024501	0.00205	4.91E-05	0.024501	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.03299			0.029202			-11.48%
Montgomowy		Refuel Spillage			0.049243			0.04358			-11.50%
wontgomery		Running Exh	56.07515	8.891772	1.831516	51.65467	8.073683	1.70824	-7.88%	-9.20%	-6.73%
		Start Exh	16.56305	1.728084	1.856271	16.56305	1.728084	1.856271	0.00%	0.00%	0.00%
		Evap Permeation			0.414704			0.414704			0.00%
		Evap Fuel Vent			1.278304			1.278304			0.00%
	TDM	Evap Fuel Leak			0.205604			0.205604			0.00%
		Crank Run Exh	0.008574	0.000594	0.024755	0.008012	0.000581	0.023104	-6.55%	-2.08%	-6.67%
		Crank Start Exh	0.00205	4.91E-05	0.024501	0.00205	4.91E-05	0.024501	0.00%	0.00%	0.00%
		Refuel Disp Vap			0.034044			0.030145			-11.45%
		Refuel Spillage			0.050575			0.044817			-11.39%
		Running Exh	13.76057	2.094166	0.446689	11.63502	1.72996	0.398257	-15.45%	-17.39%	-10.84%
Waller	HPMS	Start Exh	4.693822	0.426375	0.501865	4.693822	0.426375	0.501865	0.00%	0.00%	0.00%
		Evap Permeation			0.105038			0.105038			0.00%

			Default				КС		% Difference			
County	VMTBasis	Process	CO	NOx	VOC	CO	NOx	VOC	CO	NOx	VOC	
		Evap Fuel Vent			0.26483			0.26483			0.00%	
		Evap Fuel Leak			0.049597			0.049597			0.00%	
		Crank Run Exh	0.002002	0.000121	0.005916	0.001727	0.000111	0.005281	-13.71%	-7.83%	-10.73%	
		Crank Start Exh	0.000584	1.31E-05	0.006629	0.000584	1.31E-05	0.006629	0.00%	0.00%	0.00%	
		Refuel Disp Vap			0.007392			0.005976			-19.16%	
		Refuel Spillage			0.009543			0.007707			-19.24%	
		Running Exh	13.73021	2.16603	0.443948	12.1271	1.870922	0.405405	-11.68%	-13.62%	-8.68%	
		Start Exh	4.693822	0.426375	0.501865	4.693822	0.426375	0.501865	0.00%	0.00%	0.00%	
		<b>Evap Permeation</b>			0.104983			0.104983			0.00%	
		Evap Fuel Vent			0.262694			0.262694			0.00%	
	TDM	Evap Fuel Leak			0.049598			0.049598			0.00%	
		Crank Run Exh	0.002019	0.000122	0.005984	0.001801	0.000115	0.005463	-10.80%	-5.90%	-8.71%	
		Crank Start Exh	0.000584	1.31E-05	0.006629	0.000584	1.31E-05	0.006629	0.00%	0.00%	0.00%	
		Refuel Disp Vap			0.007646			0.006406			-16.22%	
		Refuel Spillage			0.009932			0.008321			-16.22%	